Preservation of log-concavity on summation

We extend Hoggar's theorem that the sum of two independent discrete-valued log-concave random variables is itself log-concave. We introduce conditions under which the result still holds for dependent variables. We argue that these conditions are natural by giving some applications. Firstly, we use our main theorem to give simple proofs of the log-concavity of the Stirling numbers of the second kind and of the Eulerian numbers. Secondly, we prove results concerning the log-concavity of the sum of independent (not necessarily log-concave) random variables.

[1]  F. Brenti,et al.  Expansions of chromatic polynomials and log-concavity , 1992 .

[2]  S. G. Hoggar Chromatic polynomials and logarithmic concavity , 1974 .

[3]  M. Bagnoli,et al.  Log-concave probability and its applications , 2004 .

[4]  Miklós Bóna,et al.  Combinatorial Proof of the Log-Concavity of the Numbers of Permutations with k Runs , 2000, J. Comb. Theory, Ser. A.

[5]  J. Rochet,et al.  COMPETING MECHANISMS IN A COMMON VALUE ENVIRONMENT , 2000 .

[6]  H. Wilf generatingfunctionology: Third Edition , 1990 .

[7]  Yeong-Nan Yeh,et al.  Log-concavity and LC-positivity , 2007, J. Comb. Theory, Ser. A.

[8]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[9]  E. Lieb Concavity properties and a generating function for stirling numbers , 1968 .

[10]  Constantin P. Niculescu A NEW LOOK AT NEWTON'S INEQUALITIES , 2000 .

[11]  Vesselin Gasharov,et al.  On the Neggers-Stanley Conjecture and the Eulerian Polynomials , 1998, J. Comb. Theory, Ser. A.

[12]  Bruce E. Sagan,et al.  Inductive and injective proofs of log concavity results , 1988, Discret. Math..

[13]  Preserving Log-Concavity Under Convolution: Comment , 2002 .

[14]  George Polya,et al.  On The Product of Two Power Series , 1949, Canadian Journal of Mathematics.

[15]  Yeong-Nan Yeh,et al.  Polynomials with real zeros and Po'lya frequency sequences , 2005, J. Comb. Theory, Ser. A.

[16]  F. Brenti,et al.  Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .

[17]  Bruce E. Sagan,et al.  Inductive proofs of q-log concavity , 1992, Discret. Math..

[18]  James G. Oxley,et al.  Matroid theory , 1992 .

[19]  Yi Wang,et al.  Linear transformations preserving log-concavity , 2003 .

[20]  K. Joag-dev,et al.  Negative Association of Random Variables with Applications , 1983 .