Canopy bidirectional reflectance calculation based on Adding method and SAIL formalism: AddingS/AddingSD

The SAIL model (proposed by Verhoef) is largely used in the remote sensing community to calculate the canopy Bidirectional Reflectance Distribution Function. The simulation results appear acceptable compared to observations especially for not very dense planophile vegetation. However, for erectophile dense crops (e.g. corn) the simulations appear less accurate. This inadequacy is due to the assumption that the multiple scattered fluxes are isotropically distributed. The SAIL parameters are interpretable at the level of elementary layer components. Now, the Adding method (initially proposed by Van de Hulst) provides a good framework to model the radiative transfer inside a vegetation layer, but its parameter estimation lies on very simple geometric modeling of the canopy. In this paper, we first propose an adaptation of the Adding method using the SAIL model canopy representation in the turbid case: it is called AddingS model. Such an approach allows to overcome the isotropy assumption. Second, AddingS is extended to the Discrete case: defining the AddingSDmodel. It allows to take into account the multi hot spot effect. Moreover, the AddingS and AddingSD models allow to check the energy conservation in respectively turbid and discrete cases. Finally, in order to keep reasonable time performance, a fast computation method was developed.

[1]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[2]  Lu Su,et al.  Radiation Transfer Model Intercomparison (RAMI) exercise: Results from the second phase , 2004 .

[3]  N. Gobron,et al.  A semidiscrete model for the scattering of light by vegetation , 1997 .

[4]  W. Verhoef Improved modelling of multiple scattering in leaf canopies : the model SAIL++ , 2002 .

[5]  W. Verhoef Theory of radiative transfer models applied in optical remote sensing of vegetation canopies , 1998 .

[6]  A. Kuusk Determination of vegetation canopy parameters from optical measurements , 1991 .

[7]  W. Verhoef,et al.  Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models , 2003 .

[8]  W. Verhoef,et al.  Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data , 2007 .

[9]  D. Pitts,et al.  Reflectance of a vegetation canopy using the Adding method. , 1982, Applied optics.

[10]  A. Kuusk A fast, invertible canopy reflectance model , 1995 .

[11]  R. Myneni,et al.  Photon-vegetation interactions : applications in optical remote sensing and plant ecology , 1992 .

[12]  Michel M. Verstraete,et al.  Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media , 1998, IEEE Trans. Geosci. Remote. Sens..

[13]  G. Suits The calculation of the directional reflectance of a vegetative canopy , 1971 .

[14]  Narendra S. Goel,et al.  Two models for rapidly calculating bidirectional reflectance of complex vegetation scenes: Photon spread (PS) model and statistical photon spread (SPS) model , 1998 .

[15]  Ranga B. Myneni,et al.  Photon-Vegetation Interactions , 1991, Springer Berlin Heidelberg.

[16]  W. Verhoef Earth observation modelling based on layer scattering matrices , 1984 .

[17]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[18]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[19]  W. Qin,et al.  3-D Scene Modeling of Semidesert Vegetation Cover and its Radiation Regime , 2000 .

[20]  S. Liang,et al.  Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model , 2003 .

[21]  B. Pinty,et al.  A physical model of the bidirectional reflectance of vegetation canopies , 1990 .

[22]  Lee K. Balick,et al.  Thermal vegetation canopy model studies , 1981 .

[23]  J. Lenoble Radiative transfer in scattering and absorbing atmospheres: Standard computational procedures , 1985 .

[24]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[25]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[26]  N. Bunnik The multispectral reflectance of shortwave radiation by agricultural crops in relation with their morphological and optical properties , 1978 .

[27]  Philip Lewis Three-dimensional plant modelling for remote sensing simulation studies using the Botanical Plant Modelling System , 1999 .

[28]  V. Demarez,et al.  Modeling radiative transfer in heterogeneous 3D vegetation canopies , 1995, Remote Sensing.

[29]  Peter R. J. North,et al.  Three-dimensional forest light interaction model using a Monte Carlo method , 1996, IEEE Trans. Geosci. Remote. Sens..

[30]  A. Kuusk A Markov chain model of canopy reflectance , 1995 .

[31]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[32]  Alexander A. Kokhanovsky,et al.  Light Scattering Reviews 2 , 2007 .

[33]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[34]  Arthur J. Richardson,et al.  Plant-Canopy Irradiance Specified by the Duntley Equations , 1970 .

[35]  R. Dickinson,et al.  A physical model of the bidirectional reflectance of vegetation canopies: 2. Inversion and validation , 1990 .

[36]  A. Kuusk A multispectral canopy reflectance model , 1994 .

[37]  G. Campbell Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions , 1990 .

[38]  Abdelaziz Kallel Inversion d’images satellites « haute résolution » visible / infrarouge pour le suivi de la couverture végétale des sols en hiver par modélisation du transfert radiatif : fusion de données et classification , 2007 .