Identifiability and identification of linear systems with delays Advances in Time-Delay Systems

Parameter identifiability and identification are studied for linear differential delay equations of neutral type and with distributed delays. It is shown how the identifiability property can be fonnulated in terms of controllability conditions, namely approximate controllability for the general case, and weak controllability for the retarded case with finitely many lumped delays in the state vector and control input. The notion of sufficiently rich input, which enforces identifiability, is also addressed, and the results are obtained assuming knowledge of the solution on a bounded time interval. Once the parameter identifiability is guaranteed, synthesis of an adaptive parameter identifier is developed for systems with finitely many lumped delays in the state vector and control input. Theoretical results arc supported by numerical simulations.

[1]  Er-Wei Bai,et al.  Improving delay estimates derived from least-square algorithms and Padé approximations , 1993 .

[2]  Mohamed Darouach,et al.  Linear functional observers for systems with delays in state variables , 2001, IEEE Trans. Autom. Control..

[3]  V. Kolmanovskii,et al.  Stability of Functional Differential Equations , 1986 .

[4]  Franco Blanchini,et al.  A Razumikhin-type lemma for functional differential equations with application to adaptive control , 1999, Autom..

[5]  A. Feuer,et al.  Time delay estimation in continuous linear time-invariant systems , 1994, IEEE Trans. Autom. Control..

[6]  Ilya Kolmanovsky,et al.  Preserving Stability/Performance when Facing an Unknown Time-Delay , 2000 .

[7]  Myung Jin Chung,et al.  Robust observer-based H∞ controller design for linear uncertain time-delay systems , 1997, Autom..

[8]  Yury Orlov,et al.  On identifiability of linear time-delay systems , 2002, IEEE Trans. Autom. Control..

[9]  V. Lunel,et al.  Identification problems in functional differential equations , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[10]  Mukul Agarwal,et al.  On-line estimation of time delay and continuous-time process parameters† , 1987 .

[11]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[12]  P.L.D. Peres,et al.  Robust H/sub /spl infin// filtering for uncertain linear systems with multiple time-varying state delays: an LMI approach , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[13]  Kok Kiong Tan,et al.  Finite Spectrum Assignment Control of Unstable Time Delay Processes with Relay Tuning , 1998 .

[14]  A. Kumar,et al.  Delayless observers for systems with delay , 1986 .

[15]  Jean-Pierre Richard,et al.  Online parameter identification of linear time-delay systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[16]  Sjoerd Verduyn Lunel Parameter identifiability of differential delay equations , 2001 .

[17]  J. M. Fernandes,et al.  An all-pass approximation to time delay , 1996 .

[18]  Erik I. Verriest,et al.  Robust stability and adaptive control of time-varying neutral systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[19]  R. Kovacevic,et al.  Functional observer and state feedback for input time-delay systems , 1997 .

[20]  Myung Jin Chung,et al.  Observer-based H∞ controller design for state delayed linear systems , 1996, Autom..

[21]  M. Mahmoud,et al.  Adaptive stabilization of delay differential systems with unknown uncertainty bounds , 1998 .

[22]  Heinz Unbehauen,et al.  Robust Hinfinity observer design of linear state delayed systems with parametric uncertainty: the discrete-time case , 1999, Autom..

[23]  Yutaka Yamamoto,et al.  Reachability of a class of infinite-dimensional linear systems: an external approach with applicatio , 1989 .

[24]  Olivier Sename,et al.  New trends in design of observers for time-delay systems , 2001, Kybernetika.

[25]  Dong H. Chyung,et al.  Parameter identification of linear delay systems , 1989 .

[26]  K. Watanabe,et al.  Recent advances in control of time delay systems-a tutorial review , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[27]  H. Kurz,et al.  Digital parameter-adaptive control of processes with unknown dead time , 1981, Autom..

[28]  Yury Orlov,et al.  Identifiability analysis of linear delay‐differential systems , 2002 .

[29]  Kolmanovskii,et al.  Introduction to the Theory and Applications of Functional Differential Equations , 1999 .

[30]  Leonid Mirkin,et al.  H∞ control of system with I/O delay: a review of some problem‐oriented methods , 2002 .

[31]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[32]  Alfredo Germani,et al.  A state observer for nonlinear delay systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[33]  K. Biswas,et al.  Identification of stochastic time-delay systems , 1978 .

[34]  Jesus Leyva-Ramos,et al.  An asymptotic modal observer for linear autonomous time lag systems , 1995, IEEE Trans. Autom. Control..

[35]  L. Ehrenpreis,et al.  Solution of Some Problems of Division. Part IV. Invertible and Elliptic Operators , 1960 .

[36]  Mohamed Darouach,et al.  Design of reduced-order observers without internal delays , 1999, IEEE Trans. Autom. Control..

[37]  Kemin Zhou,et al.  Robust stability of uncertain time-delay systems , 2000, IEEE Trans. Autom. Control..