Estimating evapotranspiration with land data assimilation systems

Advancements in both land surface models (LSMs) and land surface data assimilation, especially over the last decade, have substantially advanced the ability of land data assimilation systems (LDASs) to estimate evapotranspiration (ET). This article provides a historical perspective on international LSM intercomparison efforts and the development of LDASs, both of which have improved LSM ET skill. In addition, an assessment of ET estimates for current LDASs is provided along with current research that demonstrates improvement in LSM ET estimates due to assimilating satellite-based soil moisture products. Using the Ensemble Kalman Filter in the Land Information System, we assimilate both NASA and Land Parameter Retrieval Model soil moisture products into the Noah LSM Version 3.2 with the North American LDAS Phase 2 (NLDAS-2), forcing to mimic the NLDAS-2 configuration. Through comparisons with two global reference ET products, one based on interpolated flux tower data and one from a new satellite ET algorithm, over the NLDAS-2 domain, we demonstrate improvement in ET estimates only when assimilating the LPRM soil moisture product. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Jeffrey P. Walker,et al.  Hydrologic Data Assimilation , 2012 .

[2]  Lifeng Luo,et al.  An intercomparison of soil moisture fields in the North American Land Data Assimilation System (NLDAS) , 2003 .

[3]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .

[4]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[5]  S. Seneviratne,et al.  Recent decline in the global land evapotranspiration trend due to limited moisture supply , 2010, Nature.

[6]  J. D. Tarpley,et al.  Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season , 2003 .

[7]  Matthias Drusch,et al.  Initializing numerical weather prediction models with satellite‐derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set , 2007 .

[8]  Eric F. Wood,et al.  An efficient calibration method for continental‐scale land surface modeling , 2008 .

[9]  P. Dirmeyer A History and Review of the Global Soil Wetness Project (GSWP) , 2011 .

[10]  D. McLaughlin,et al.  Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .

[11]  Randal D. Koster,et al.  The Interplay between Transpiration and Runoff Formulations in Land Surface Schemes Used with Atmospheric Models , 1997 .

[12]  Ann Henderson-Sellers,et al.  Recent progress and results from the project for the intercomparison of landsurface parameterization schemes , 1998 .

[13]  Ann Henderson-Sellers,et al.  Biosphere-atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model , 1986 .

[14]  S. Seneviratne,et al.  Basin scale estimates of evapotranspiration using GRACE and other observations , 2004 .

[15]  Naota Hanasaki,et al.  GSWP-2 Multimodel Analysis and Implications for Our Perception of the Land Surface , 2006 .

[16]  Scott C. Doney,et al.  Evaluation of ocean carbon cycle models with data‐based metrics , 2004 .

[17]  Matthew Rodell,et al.  Analysis of terrestrial water storage changes from GRACE and GLDAS , 2008 .

[18]  Jared Entin,et al.  Remotely sensed forcing data and the Global Land Data Assimilation System , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[19]  Sujay V. Kumar,et al.  Land information system: An interoperable framework for high resolution land surface modeling , 2006, Environ. Model. Softw..

[20]  G. Gayno,et al.  Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model , 2003 .

[21]  Randal D. Koster,et al.  Bias reduction in short records of satellite soil moisture , 2004 .

[22]  S. Seneviratne,et al.  Evaluation of global observations‐based evapotranspiration datasets and IPCC AR4 simulations , 2011 .

[23]  D. Lettenmaier,et al.  Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification , 1996 .

[24]  Ann Henderson-Sellers,et al.  The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3 , 1995 .

[25]  J. D. Tarpley,et al.  Overview of the north American land data assimilation system (NLDAS) , 2013 .

[26]  W. Crow,et al.  The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using Ensemble Kalman filtering: a case study based on ESTAR measurements during SGP97 , 2003 .

[27]  D. Lawrence,et al.  Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model , 2011 .

[28]  Dennis P. Lettenmaier,et al.  Noah LSM Snow Model Diagnostics and Enhancements , 2010 .

[29]  Matthew Rodell,et al.  Updating a Land Surface Model with MODIS-Derived Snow Cover , 2004 .

[30]  A. Bondeau,et al.  Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model , 2009 .

[31]  C. Daly,et al.  A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain , 1994 .

[32]  A. Dalcher,et al.  A Simple Biosphere Model (SIB) for Use within General Circulation Models , 1986 .

[33]  J. D. Tarpley,et al.  Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains : GEWEX Continental-Scale International Project, Part 3 (GCIP3) , 2003 .

[34]  P. Dirmeyer,et al.  Improving the quality of simulated soil moisture with a multi‐model ensemble approach , 2007 .

[35]  David D. Parrish,et al.  NORTH AMERICAN REGIONAL REANALYSIS , 2006 .

[36]  Matthias Drusch,et al.  Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture , 2005 .

[37]  Wade T. Crow,et al.  Role of Subsurface Physics in the Assimilation of Surface Soil Moisture Observations , 2009 .

[38]  Youlong Xia,et al.  Improvement of the Noah land surface model for warm season processes: evaluation of water and energy flux simulation , 2013 .

[39]  Maosheng Zhao,et al.  Improvements to a MODIS global terrestrial evapotranspiration algorithm , 2011 .

[40]  Dennis P. Lettenmaier,et al.  Modeling the Effects of Lakes and Wetlands on the Water Balance of Arctic Environments , 2010 .

[41]  Lifeng Luo,et al.  Snow process modeling in the North American Land Data Assimilation System (NLDAS): 1. Evaluation of model‐simulated snow cover extent , 2003 .

[42]  R. Koster,et al.  The Rhône-Aggregation Land Surface Scheme Intercomparison Project: An Overview , 2002 .

[43]  Wade T. Crow,et al.  The Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System , 2011 .

[44]  S. Manabe CLIMATE AND THE OCEAN CIRCULATION1 , 1969 .

[45]  Lifeng Luo,et al.  Streamflow and water balance intercomparisons of four land surface models in the North American Land Data Assimilation System Project , 2004 .

[46]  K. Mo,et al.  Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products , 2012 .

[47]  J. D. Tarpley,et al.  Real‐time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project , 2003 .

[48]  T. Meyers,et al.  Sensitivity of Land Surface Simulations to Model Physics, Land Characteristics, and Forcings, at Four CEOP Sites , 2007 .

[49]  Lifeng Luo,et al.  Snow process modeling in the north american Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent : GEWEX Continental-Scale International Project, Part 3 (GCIP3) , 2003 .

[50]  Youlong Xia,et al.  Drought Indices Based on the Climate Forecast System Reanalysis and Ensemble NLDAS , 2011 .

[51]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[52]  Thomas J. Jackson,et al.  Soil moisture retrieval from AMSR-E , 2003, IEEE Trans. Geosci. Remote. Sens..

[53]  Sujay V. Kumar,et al.  High-performance Earth system modeling with NASA/GSFC’s Land Information System , 2007, Innovations in Systems and Software Engineering.

[54]  Maosheng Zhao,et al.  Development of a global evapotranspiration algorithm based on MODIS and global meteorology data , 2007 .

[55]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[56]  J. Dudhia,et al.  Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains , 2010 .

[57]  R. Jeu,et al.  Multisensor historical climatology of satellite‐derived global land surface moisture , 2008 .

[58]  R. Dickinson,et al.  The land surface climatology of the community land model coupled to the NCAR community climate model , 2002 .

[59]  Wade T. Crow,et al.  A land surface data assimilation framework using the land information system : Description and applications , 2008 .

[60]  M. Ek,et al.  Comparative analysis of relationships between NLDAS‐2 forcings and model outputs , 2012 .

[61]  R. Dickinson,et al.  The Common Land Model , 2003 .

[62]  S. Seneviratne,et al.  Global intercomparison of 12 land surface heat flux estimates , 2011 .

[63]  R. Koster,et al.  Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E) and the Scanning Multichannel Microwave Radiometer (SMMR) , 2007 .

[64]  A. J. Dolman,et al.  The Pilot Phase of the Global Soil Wetness Project , 1999 .