Silicon dry oxidation kinetics at low temperature in the nanometric range: Modeling and experiment

Kinetics of silicon dry oxidation are investigated theoretically and experimentally at low temperature in the nanometer range where the limits of the Deal and Grove model becomes critical. Based on a fine control of the oxidation process conditions, experiments allow the investigation of the growth kinetics of nanometric oxide layer. The theoretical model is formulated using a reaction rate approach. In this framework, the oxide thickness is estimated with the evolution of the various species during the reaction. Standard oxidation models and the reaction rate approach are confronted with these experiments. The interest of the reaction rate approach to improve silicon oxidation modeling in the nanometer range is clearly demonstrated.

[1]  James D. Plummer,et al.  Silicon Orientation Effects in the Initial Regime of Wet Oxidation , 2002 .

[2]  K. Saraswat,et al.  Two-dimensional thermal oxidation of silicon—I. Experiments , 1987, IEEE Transactions on Electron Devices.

[3]  B. Agius,et al.  An 18O Study of the Oxidation Mechanism of Silicon in Dry Oxygen , 1984 .

[4]  M. H. An,et al.  Growth law of silicon oxides by dry oxidation , 1996 .

[5]  C. R. Helms,et al.  Parallel Oxidation Mechanism for Si Oxidation in Dry O 2 , 1987 .

[6]  M. Verheijen,et al.  Thickness and composition of ultrathin SiO2 layers on Si , 2004 .

[8]  D. Wolters,et al.  Kinetics of dry oxidation of silicon. I. Space‐charge‐limited growth , 1989 .

[9]  Takanobu Watanabe,et al.  New linear-parabolic rate equation for thermal oxidation of silicon. , 2006, Physical review letters.

[10]  D. Wolters,et al.  Kinetics of dry oxidation of silicon. II. Conditions affecting the growth , 1989 .

[11]  T. Chao,et al.  Measurement of Ultrathin (<100 Å) Oxide Films by Multiple‐Angle Incident Ellipsometry , 1991 .

[12]  A. Pasquarello,et al.  Multiscale modeling of oxygen diffusion through the oxide during silicon oxidation , 2004 .

[13]  A. Stoneham,et al.  Atomic and ionic processes of silicon oxidation , 2001 .

[14]  William H. Press,et al.  Numerical Recipes in Fortran 77 , 1992 .

[15]  S. Banerjee,et al.  Interactions of B dopant atoms and Si interstitials with SiO2 films during annealing for ultra-shallow junction formation , 2005 .

[16]  I. Baumvol,et al.  Dynamics of thermal growth of silicon oxide films on Si , 1999, cond-mat/9901335.

[17]  James D. Plummer,et al.  Thermal Oxidation of Silicon in Dry Oxygen: Growth‐Rate Enhancement in the Thin Regime II . Physical Mechanisms , 1985 .

[18]  M. Nascimento,et al.  The nature of the chemical bond , 2008 .

[19]  I. Eisele,et al.  Growth model for thin oxides and oxide optimization , 2004 .

[20]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[21]  H. B. Harrison,et al.  Extension of the Deal-Grove oxidation model to include the effects of nitrogen , 1996 .

[22]  Mark L. Green,et al.  Ultrathin (<4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits , 2001 .

[23]  James D. Plummer,et al.  Thermal oxidation of silicon in dry oxygen growth-rate enhancement in the thin regime. I: Experimental results , 1985 .

[24]  Reliability Scaling Limit of 14-Å Oxynitride Gate Dielectrics by Different Processing Treatments , 2005 .

[25]  I. Baumvol Atomic transport during growth of ultrathin dielectrics on silicon , 1999 .

[26]  A. Z. Duijnhoven,et al.  Thermal oxidation of silicon and residual fixed charge , 1993 .

[27]  Y. J. V. D. Meulen,et al.  Silicon Oxidation Studies: Analysis of SiO2 Film Growth Data , 1976 .

[28]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[29]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[30]  Krishna C. Saraswat,et al.  Two-dimensional thermal oxidation of silicon. II. Modeling stress effects in wet oxides , 1988 .

[31]  E. Irene,et al.  The Effect of Surface Orientation on Silicon Oxidation Kinetics , 1987 .

[32]  Optimum structure of deposited ultra thin silicon oxynitride film to minimize leakage current , 2003 .