Interactive Multiobjective Fuzzy Random Linear Programming through Fractile Criteria

We propose an interactive fuzzy decision making method for multiobjective fuzzy random linear programming problems through fractile criteria optimization. In the proposed method, it is assumed that the decision maker has fuzzy goals for not only objective functions but also permissible probability levels in a fractile optimization model, and such fuzzy goals are quantified by eliciting the corresponding membership functions. Using the fuzzy decision, such two kinds of membership functions are integrated. In the integrated membership space, the satisfactory solution is obtained from among an extended Pareto optimal solution set through the interaction with the decision maker. An illustrative numerical example is provided to demonstrate the feasibility and efficiency of the proposed method.

[1]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[2]  Madan M. Gupta,et al.  On fuzzy stochastic optimization , 1996, Fuzzy Sets Syst..

[3]  Ichiro Nishizaki,et al.  Fuzzy Stochastic Multiobjective Programming , 2013 .

[4]  Wang Guangyuan,et al.  Linear programming with fuzzy random variable coefficients , 1993 .

[5]  坂和 正敏 Fuzzy sets and interactive multiobjective optimization , 1993 .

[6]  J. Glen Mathematical models in farm planning: a survey , 1987 .

[7]  George B. Dantzig,et al.  Linear Programming Under Uncertainty , 2004, Manag. Sci..

[8]  Peter Kall,et al.  Stochastic Linear Programming , 1975 .

[9]  Ichiro Nishizaki,et al.  Fuzzy Multiobjective Stochastic Programming , 2011 .

[10]  H. Ishii,et al.  A model of crop planning under uncertainty in agricultural management , 2003 .

[11]  John J. Glen,et al.  Feature Article - Mathematical Models in Farm Planning: A Survey , 1987, Oper. Res..

[12]  Masatoshi Sakawa,et al.  Interactive multiobjective fuzzy random programming through the level set-based probability model , 2011, Inf. Sci..

[13]  Ichiro Nishizaki,et al.  Interactive multiobjective fuzzy random linear programming: Maximization of possibility and probability , 2008, Eur. J. Oper. Res..

[14]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[15]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[16]  H. Zimmermann Fuzzy sets, decision making, and expert systems , 1987 .

[17]  Hitoshi Yano,et al.  Fuzzy approaches for multiobjective fuzzy random linear programming problems through a probability maximization model , 2011, IMECS 2011.

[18]  Masatoshi Sakawa,et al.  Fuzzy Sets and Interactive Multiobjective Optimization , 1993 .

[19]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[20]  Kiyotada Hayashi,et al.  Multicriteria analysis for agricultural resource management: A critical survey and future perspectives , 2000, Eur. J. Oper. Res..

[21]  Hiroaki Ishii,et al.  A Crop Planning Problem with Fuzzy Random Profit Coefficients , 2005, Fuzzy Optim. Decis. Mak..

[22]  P. Kall STOCHASTIC LINEAR PROGRAMMING Models , Theory , and Computation , 2013 .