X-ray emission from large scale jets of AGNs at high redshifts

[1]  W. Sparks,et al.  Variability of extragalactic X-ray jets on kiloparsec scales , 2023, Nature Astronomy.

[2]  M. Georganopoulos,et al.  Offsets between X-Ray and Radio Components in X-Ray Jets: The AtlasX , 2022, The Astrophysical Journal Supplement Series.

[3]  M. Georganopoulos,et al.  A Multi-Wavelength Study of Multiple Spectral Component Jets in AGN: Testing the IC/CMB Model for the Large-Scale-Jet X-ray Emission , 2022, Monthly Notices of the Royal Astronomical Society.

[4]  S. Frey,et al.  Radio Jet Proper-motion Analysis of Nine Distant Quasars above Redshift 3.5 , 2022, The Astrophysical Journal.

[5]  J. Wardle,et al.  X-Ray Jets in the High-redshift Quasars J1405+0415 and J1610+1811 , 2022, The Astrophysical Journal.

[6]  A. Lazarian,et al.  Turbulent Magnetic Field Amplification by the Interaction of a Shock Wave and Inhomogeneous Medium , 2022, The Astrophysical Journal.

[7]  A. A. Rahman,et al.  Advection of Accelerated Electrons in Radio/X-ray Knots of AGN Jets , 2022, Monthly notices of the Royal Astronomical Society.

[8]  S. Frey,et al.  Radio-loud Quasars above Redshift 4: VLBI Imaging of an Extended Sample , 2022, 2204.02114.

[9]  G. Tagliaferri,et al.  Blazar nature of high-z radio-loud quasars , 2022, Astronomy & Astrophysics.

[10]  A. Moretti,et al.  Direct observation of an extended X-ray jet at z=6.1 , 2021, Astronomy & Astrophysics.

[11]  A. Moretti,et al.  The impact of the CMB on the evolution of high-z blazars , 2021, 2106.01953.

[12]  B. Ciardi,et al.  Proof of CMB-driven X-ray brightening of high-z radio galaxies , 2021, 2105.03467.

[13]  J. Wardle,et al.  Discovery of Candidate X-Ray Jets in High-redshift Quasars , 2021, 2102.12609.

[14]  K. Knudsen,et al.  The Hyperluminous, Dust-obscured Quasar W2246–0526 at z = 4.6: Detection of Parsec-scale Radio Activity , 2020, The Astrophysical Journal.

[15]  F. Tavecchio Constraining the shear acceleration model for the X-ray emission of large-scale extragalactic jets , 2020, 2011.03264.

[16]  J. Wardle,et al.  Two Candidate High-redshift X-Ray Jets without Coincident Radio Jets , 2020, The Astrophysical Journal.

[17]  J. Wardle,et al.  Inverse-Compton scattering in the resolved jet of the high-redshift quasar PKS J1421−0643 , 2020, 2007.03536.

[18]  Y. Fukazawa,et al.  Cosmological Evolution of Flat-spectrum Radio Quasars Based on the Swift/BAT 105 Month Catalog and Their Contribution to the Cosmic MeV Gamma-Ray Background Radiation , 2020, The Astrophysical Journal.

[19]  A. Moretti,et al.  The first blazar observed at z > 6 , 2020, Astronomy & Astrophysics.

[20]  G. Richards,et al.  The bolometric quasar luminosity function at z = 0–7 , 2020, Monthly Notices of the Royal Astronomical Society.

[21]  F. Rieger An Introduction to Particle Acceleration in Shearing Flows , 2019, Galaxies.

[22]  G. Garmire,et al.  Investigating the X-ray enhancements of highly radio-loud quasars at z > 4 , 2018, Monthly Notices of the Royal Astronomical Society.

[23]  R. Misra,et al.  Broadband spectral fitting of blazars using XSPEC , 2018, 1801.00685.

[24]  M. Georganopoulos,et al.  Fermi Non-detections of Four X-Ray Jet Sources and Implications for the IC/CMB Mechanism , 2017, 1710.04250.

[25]  S. Frey,et al.  VLBI observations of four radio quasars at z > 4: blazars or not? , 2017, 1701.04760.

[26]  Xiaohui Fan,et al.  THE FINAL SDSS HIGH-REDSHIFT QUASAR SAMPLE OF 52 QUASARS AT z > 5.7 , 2016, 1610.05369.

[27]  N. P. Lee,et al.  DETECTING RELATIVISTIC X-RAY JETS IN HIGH-REDSHIFT QUASARS , 2016, 1609.03425.

[28]  H. Rix,et al.  THE PAN-STARRS1 DISTANT z > 5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE , 2016, 1608.03279.

[29]  M. Lister,et al.  THE SPECTACULAR RADIO-NEAR-IR-X-RAY JET OF 3C 111: THE X-RAY EMISSION MECHANISM AND JET KINEMATICS , 2016, 1602.04794.

[30]  D. Harris,et al.  Novel Analysis of the Multiwavelength Structure of the Relativistic Jet in Quasar 3C 273 , 2016, 1602.01654.

[31]  M. Lister,et al.  A MULTIWAVELENGTH STUDY OF THREE HYBRID BLAZARS , 2015, 1505.05851.

[32]  W. Sparks,et al.  RULING OUT IC/CMB X-RAYS IN PKS 0637-752 AND THE IMPLICATIONS FOR TEV EMISSION FROM LARGE-SCALE QUASAR JETS , 2015, 1504.00577.

[33]  H. Rix,et al.  CONSTRAINING THE RADIO-LOUD FRACTION OF QUASARS AT z > 5.5 , 2015, 1503.04214.

[34]  N. Gehrels,et al.  Blazar Candidates Beyond Redshift 4 Observed by Swift , 2014, 1410.0364.

[35]  M. Georganopoulos,et al.  FERMI RULES OUT THE INVERSE COMPTON/CMB MODEL FOR THE LARGE-SCALE JET X-RAY EMISSION OF 3C 273 , 2013, 1307.8421.

[36]  W. Brandt,et al.  AN X-RAY AND MULTIWAVELENGTH SURVEY OF HIGHLY RADIO-LOUD QUASARS AT z > 4: JET-LINKED EMISSION IN THE BRIGHTEST RADIO BEACONS OF THE EARLY UNIVERSE , 2012, 1301.0012.

[37]  M. Lister,et al.  CHANDRA AND HST IMAGING OF THE QUASARS PKS B0106+013 AND 3C 345: INVERSE COMPTON X-RAYS AND MAGNETIZED JETS , 2012, 1201.4178.

[38]  J. Lovell,et al.  DEEP MULTIWAVEBAND OBSERVATIONS OF THE JETS OF 0208–512 AND 1202–262 , 2011, 1107.2058.

[39]  L. Chen,et al.  X-RAY RADIATION MECHANISMS AND BEAMING EFFECT OF HOT SPOTS AND KNOTS IN ACTIVE GALACTIC NUCLEAR JETS , 2009, 0912.2470.

[40]  A. Lazarian,et al.  TURBULENCE-INDUCED MAGNETIC FIELDS AND STRUCTURE OF COSMIC RAY MODIFIED SHOCKS , 2009, 0908.2806.

[41]  J. Chiang,et al.  THE EVOLUTION OF SWIFT/BAT BLAZARS AND THE ORIGIN OF THE MeV BACKGROUND , 2009, 0905.0472.

[42]  P. Edwards,et al.  Chandra Reveals Twin X-Ray Jets in the Powerful FR II Radio Galaxy 3C 353 , 2008, 0806.1260.

[43]  S. Sahayanathan A two-zone synchrotron model for the knots in the M87 jet , 2008, 0805.2842.

[44]  G. Ghisellini,et al.  The power of blazar jets , 2007, 0711.4112.

[45]  R. Sambruna,et al.  Chandra and Hubble Space Telescope Observations of Gamma-Ray Blazars: Comparing Jet Emission at Small and Large Scales , 2007, astro-ph/0703359.

[46]  T. Aldcroft,et al.  The 300 kpc Long X-Ray Jet in PKS 1127–145, z = 1.18 Quasar: Constraining X-Ray Emission Models , 2006, astro-ph/0611406.

[47]  J. Mcenery,et al.  Quasar X-Ray Jets: Gamma-Ray Diagnostics of the Synchrotron and Inverse Compton Hypotheses: The Case of 3C 273 , 2006, astro-ph/0610847.

[48]  D. Harris,et al.  X-Ray Emission from Extragalactic Jets , 2006, astro-ph/0607228.

[49]  G. Richards,et al.  An Observational Determination of the Bolometric Quasar Luminosity Function , 2006, astro-ph/0605678.

[50]  C. Urry,et al.  Shedding New Light on the 3C 273 Jet with the Spitzer Space Telescope , 2006, astro-ph/0605530.

[51]  D. Harris,et al.  Constraints on the Nature of Jets from kpc Scale X-ray Data , 2006, astro-ph/0604527.

[52]  A. Marscher,et al.  The X‐ray and radio jets of quasars on kiloparsec scales , 2006 .

[53]  J. Kataoka,et al.  X-Ray Emission Properties of Large-Scale Jets, Hot Spots, and Lobes in Active Galactic Nuclei , 2004, astro-ph/0411042.

[54]  D. Harris,et al.  The X-Ray Jet of 3C 120: Evidence for a Nonstandard Synchrotron Spectrum , 2004, astro-ph/0407354.

[55]  C. Dermer,et al.  Synchrotron versus Compton Interpretations for Extended X-Ray Jets , 2004, astro-ph/0402647.

[56]  C. Cheung Radio Identification of the X-Ray Jet in the z = 4.3 Quasar GB 1508+5714 , 2003, astro-ph/0310733.

[57]  T. Aldcroft,et al.  An X-Ray Jet Discovered by Chandra in the z = 4.3 Radio-selected Quasar GB 1508+5714 , 2003, astro-ph/0310241.

[58]  A. Fabian,et al.  Extended X-ray emission in the high-redshift quasar GB 1508+5714 at z = 4.3 , 2003, astro-ph/0309318.

[59]  Daniel A. Schwartz,et al.  X-Ray Jets as Cosmic Beacons , 2002 .

[60]  R. Perley,et al.  X-rays from the jet in 3C 273: Clues from the radio{optical spectra , 2002, astro-ph/0202428.

[61]  C. Urry,et al.  A survey of extended radio jets in AGN with Chandra and HST: First Results , 2002, astro-ph/0201412.

[62]  D. Harris,et al.  X-Ray Emission Processes in Radio Jets , 2001, astro-ph/0109523.

[63]  M. Birkinshaw,et al.  Chandra observations of the X‐ray jet in 3C 66B , 2001, astro-ph/0106029.

[64]  C. Urry,et al.  The X-Ray Jet of PKS 0637–752: Inverse Compton Radiation from the Cosmic Microwave Background? , 2000, astro-ph/0007441.

[65]  E. Feigelson,et al.  Chandra Discovery of a 100 kiloparsec X-Ray Jet in PKS 0637–752 , 2000, astro-ph/0005255.

[66]  Italy.,et al.  Jets and accretion processes in active galactic nuclei: further clues , 1996, astro-ph/9611111.

[67]  S. Inoue,et al.  Electron Acceleration and Gamma-Ray Emission from Blazars , 1996 .

[68]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[69]  S. Cristiani,et al.  Deep VLA observations of an optically selected sample of intermediate redshift QSOs and the optical luminosity function of the radio loud QSOs , 1994 .

[70]  D. Melrose,et al.  Diffusive Shock Acceleration by Multiple Shock Fronts with Differing Properties , 1994, Publications of the Astronomical Society of Australia.

[71]  P. Padovani The radio-loud fraction of QSOs and its dependence on magnitude and redshift , 1993 .

[72]  P. Padovani,et al.  Relativistic bulk motion in active galactic nuclei , 1993 .

[73]  P. Hewett,et al.  Radio properties of optically selected quasars , 1992 .

[74]  R. Schlickeiser,et al.  High-energy gamma radiation from extragalactic radio sources , 1992 .

[75]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[76]  A. Hillas The Origin of Ultra-High-Energy Cosmic Rays , 1984 .