Fonctions holonomes en calcul formel
暂无分享,去创建一个
[1] O. Ore. Theory of Non-Commutative Polynomials , 1933 .
[2] Volker Strehl,et al. Binomial identities - combinatorial and algorithmic aspects , 1994, Discret. Math..
[3] Pierre Cartier,et al. Démonstration «automatique» d'identités et fonctions hypergéométriques , 1992 .
[4] L. Lipshitz,et al. D-finite power series , 1989 .
[5] R. W. Gosper. Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.
[6] Frédéric Chyzak,et al. An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..
[7] FunctionsBernd Sturmfels,et al. Grr Obner Bases and Hypergeometric Functions , 1997 .
[8] Peter Paule. A note on Bailey's Lemma , 1987, J. Comb. Theory, Ser. A.
[9] Nobuki Takayama,et al. Gröbner basis, integration and transcendental functions , 1990, ISSAC '90.
[10] George E. Andrews,et al. q-series : their development and application in analysis, number theory, combinatorics, physics, and computer algebra , 1986 .
[11] Kurt Wegschaider,et al. Computer Generated Proofs of Binomial Multi-Sum Identities , 1997 .
[12] Peter Paule,et al. Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type , 1994, Electron. J. Comb..
[13] Helmut Prodinger. Descendants in heap ordered trees or a triumph of computer algebra , 1996, Electron. J. Comb..
[14] Teo Mora,et al. An Introduction to Commutative and Noncommutative Gröbner Bases , 1994, Theor. Comput. Sci..
[15] Doron Zeilberger,et al. An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .
[16] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[17] B. Buchberger. Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .
[18] P. Flajolet,et al. The average case analysis of algorithms : Saddle Point Asymptotics , 1994 .
[19] Michael Eugene Stillman,et al. Computation of Hilbert Functions , 1992, J. Symb. Comput..
[20] Emil Grosswald,et al. The Theory of Partitions , 1984 .
[21] Mary Celine Fasenmyer. Some generalized hypergeometric polynomials , 1947 .
[22] Philippe Flajolet,et al. The Average case analysis of algorithms : counting and generating functions , 1993 .
[23] Oystein Ore,et al. Linear Equations in Non-Commutative Fields , 1931 .
[24] Neil J. Calkin. A curious binomial identity , 1994, Discret. Math..
[25] M. Atallah,et al. An Algorithm for Estimating All Matches Between Two Strings , 1996 .
[26] Michael Karr,et al. Summation in Finite Terms , 1981, JACM.
[27] Mary Celine Fasenmyer. A Note on Pure Recurrence Relations , 1949 .
[28] Heinz Kredel,et al. Solvable polynomial rings , 1993 .
[29] M. H. Protter,et al. THE SOLUTION OF THE PROBLEM OF INTEGRATION IN FINITE TERMS , 1970 .
[30] Ferdinando Mora,et al. Groebner Bases for Non-Commutative Polynomial Rings , 1985, AAECC.
[31] Doron Zeilberger,et al. Rational function certification of multisum/integral/``$q$'' identities , 1992 .
[32] Richard Askey,et al. The world of q , 1992 .
[33] Bruno Salvy,et al. GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.
[34] R. Risch. The problem of integration in finite terms , 1969 .
[35] Richard P. Stanley,et al. Differentiably Finite Power Series , 1980, Eur. J. Comb..
[36] L. J. Rogers. Second Memoir on the Expansion of certain Infinite Products , 1893 .
[37] André Galligo,et al. Some algorithmic questions on ideals of differential operators , 1985 .
[38] Rene F. Swarttouw,et al. The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.
[39] Shalosh B. Ekhad,et al. A short WZ-style proof of Abel's identity , 1995, Electron. J. Comb..
[40] Marko Petkovsek,et al. Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..
[41] Shalosh B. Ekhad,et al. A WZ-style proof of Jacobi polynomials' generating function , 1992, Discret. Math..
[42] Peter Paule,et al. A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..
[43] P. Cohn. Free rings and their relations , 1973 .
[44] Basil Gordon,et al. A COMBINATORIAL GENERALIZATION OF THE ROGERS-RAMANUJAN IDENTITIES.* , 1961 .
[45] Volker Weispfenning,et al. Finite Gröbner bases in non-Noetherian skew polynomial rings , 1992, ISSAC '92.
[46] M. Lawrence Glasser,et al. Some integrals involving Bessel functions , 1993 .
[47] Jean-Charles Faugère,et al. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..
[48] Keith O. Geddes,et al. Algorithms for computer algebra , 1992 .
[49] Sergei A. Abramov. Rational solutions of linear difference and q-difference equations with polynomial coefficients , 1995, ISSAC '95.
[50] Sergei A. Abramov,et al. Fast algorithms to search for the rational solutions of linear differential equations with polynomial coefficients , 1991, ISSAC '91.
[51] Doron Zeilberger,et al. A maple program for proving hypergeometric identities , 1991, SIGS.
[52] N. Bose. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .
[53] Doron Zeilberger,et al. A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..
[54] Alfred J. van der Poorten,et al. A Proof that Euler Missed... , 2000 .
[55] Manuel Bronstein,et al. On polynomial solutions of linear operator equations , 1995, ISSAC '95.
[56] Mark van Hoeij,et al. A method for the integration of solutions of Ore equations , 1997, ISSAC.
[57] C. Sabbah,et al. Systemes holonomes d'équations aux g-différences , 1993 .
[58] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[59] Ralf Fröberg,et al. An introduction to Gröbner bases , 1997, Pure and applied mathematics.
[60] Philippe Flajolet,et al. The Average case analysis of algorithms : complex asymptotics and generating functions , 1993 .
[61] Masaki Kashiwara,et al. On the holonomic systems of linear differential equations, II , 1978 .
[62] Nobuki Takayama,et al. An Approach to the Zero Recognition Problem by Buchberger Algorithm , 1992, J. Symb. Comput..
[63] George E. Andrews,et al. MULTIPLE SERIES ROGERS-RAMANUJAN TYPE IDENTITIES , 1984 .
[64] Volker Weispfenning,et al. Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..
[65] Daniel Lazard,et al. Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..
[66] D. Zeilberger. A holonomic systems approach to special functions identities , 1990 .
[67] P. Paule. The concept of Bailey chains. , 1987 .
[68] Axel Riese,et al. A Generalization of Gosper's Algorithm to Bibasic Hypergeometric Summation , 1996, Electron. J. Comb..
[69] Manuel Bronstein,et al. On ore rings, linear operators and factorisation , 1993 .
[70] I. N. Bernshtein. The analytic continuation of generalized functions with respect to a parameter , 1972 .
[71] Peter Paule,et al. A Mathematica q-Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to q-Hypergeometric Telescoping , 1991 .
[72] S. A. Abramov,et al. Rational solutions of linear differential and difference equations with polynomial coefficients , 1991 .
[73] Carlo Traverso,et al. “One sugar cube, please” or selection strategies in the Buchberger algorithm , 1991, ISSAC '91.
[74] Doron Zeilberger,et al. Rational functions certify combinatorial identities , 1990 .
[75] G. Andrews,et al. An analytic generalization of the rogers-ramanujan identities for odd moduli. , 1974, Proceedings of the National Academy of Sciences of the United States of America.
[76] L. Lipshitz,et al. The diagonal of a D-finite power series is D-finite , 1988 .
[77] Michael Karr,et al. Theory of Summation in Finite Terms , 1985, J. Symb. Comput..
[78] I. N. Bernshtein. Modules over a ring of differential operators. Study of the fundamental solutions of equations with constant coefficients , 1971 .
[79] Doron Zeilberger,et al. The Method of Differentiating under the Integral Sign , 1990, J. Symb. Comput..
[80] Manuel Bronstein,et al. An Introduction to Pseudo-Linear Algebra , 1996, Theor. Comput. Sci..
[81] Doron Zeilberger,et al. The Method of Creative Telescoping , 1991, J. Symb. Comput..
[82] Philippe Flajolet,et al. An introduction to the analysis of algorithms , 1995 .
[83] S. C. Coutinho. A primer of algebraic D-modules , 1995 .
[84] Tom H. Koornwinder,et al. On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .
[85] Nobuki Takayama,et al. An algorithm of constructing the integral of a module--an infinite dimensional analog of Gröbner basis , 1990, ISSAC '90.
[86] Nobuki Takayama,et al. Gröbner basis and the problem of contiguous relations , 1989 .