Fonctions holonomes en calcul formel

Cette these montre comment le calcul formel permet la manipulation d'une grande classe de suites et fonctions solutions d'operateurs lineaires, la classe des fonctions holonomes. Celle-ci contient de nombreuses fonctions speciales, en une ou plusieurs variables, et de nom- breuses suites de la combinatoire. Un cadre theorique est tout d'abord introduit pour algorith- miser les proprietes de cloture de la classe holonome, pour y permettre un test a zero et pour unifier les calculs differentiels sur les fonctions et les calculs de recurrences sur les suites. Ces methodes s'appuient sur des calculs par une extension de la theorie des bases de Grobner dans un cadre de polynomes non commutatifs, les polynomes de Ore. Deux types d'algorithmes de sommation et d'integration symboliques definies et indefinies sont ensuite developpes, dont la justification theorique fait appel a la theorie des D-modules holonomes. Les premiers ont recours a une elimination polynomiale non commutative par bases de Grobner ; les seconds a des algo- rithmes de resolution de systemes fonctionnels lineaires en leurs solutions fractions rationnelles. Bien plus que la recherche de formes closes, l'objectif est de pouvoir continuer a calculer avec la representation implicite des objets holonomes meme en l'absence de formes explicites. Ce type de calculs permet en particulier la preuve automatique d'identites sommatoires et integrales. Une implantation de ces algorithmes dans le systeme de calcul formel Maple a permis de donner la premiere preuve automatique d'identites jusqu'a present inaccessibles par le calcul formel.

[1]  O. Ore Theory of Non-Commutative Polynomials , 1933 .

[2]  Volker Strehl,et al.  Binomial identities - combinatorial and algorithmic aspects , 1994, Discret. Math..

[3]  Pierre Cartier,et al.  Démonstration «automatique» d'identités et fonctions hypergéométriques , 1992 .

[4]  L. Lipshitz,et al.  D-finite power series , 1989 .

[5]  R. W. Gosper Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Frédéric Chyzak,et al.  An extension of Zeilberger's fast algorithm to general holonomic functions , 2000, Discret. Math..

[7]  FunctionsBernd Sturmfels,et al.  Grr Obner Bases and Hypergeometric Functions , 1997 .

[8]  Peter Paule A note on Bailey's Lemma , 1987, J. Comb. Theory, Ser. A.

[9]  Nobuki Takayama,et al.  Gröbner basis, integration and transcendental functions , 1990, ISSAC '90.

[10]  George E. Andrews,et al.  q-series : their development and application in analysis, number theory, combinatorics, physics, and computer algebra , 1986 .

[11]  Kurt Wegschaider,et al.  Computer Generated Proofs of Binomial Multi-Sum Identities , 1997 .

[12]  Peter Paule,et al.  Short and Easy Computer Proofs of the Rogers-Ramanujan Identities and of Identities of Similar Type , 1994, Electron. J. Comb..

[13]  Helmut Prodinger Descendants in heap ordered trees or a triumph of computer algebra , 1996, Electron. J. Comb..

[14]  Teo Mora,et al.  An Introduction to Commutative and Noncommutative Gröbner Bases , 1994, Theor. Comput. Sci..

[15]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[16]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[17]  B. Buchberger Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[18]  P. Flajolet,et al.  The average case analysis of algorithms : Saddle Point Asymptotics , 1994 .

[19]  Michael Eugene Stillman,et al.  Computation of Hilbert Functions , 1992, J. Symb. Comput..

[20]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[21]  Mary Celine Fasenmyer Some generalized hypergeometric polynomials , 1947 .

[22]  Philippe Flajolet,et al.  The Average case analysis of algorithms : counting and generating functions , 1993 .

[23]  Oystein Ore,et al.  Linear Equations in Non-Commutative Fields , 1931 .

[24]  Neil J. Calkin A curious binomial identity , 1994, Discret. Math..

[25]  M. Atallah,et al.  An Algorithm for Estimating All Matches Between Two Strings , 1996 .

[26]  Michael Karr,et al.  Summation in Finite Terms , 1981, JACM.

[27]  Mary Celine Fasenmyer A Note on Pure Recurrence Relations , 1949 .

[28]  Heinz Kredel,et al.  Solvable polynomial rings , 1993 .

[29]  M. H. Protter,et al.  THE SOLUTION OF THE PROBLEM OF INTEGRATION IN FINITE TERMS , 1970 .

[30]  Ferdinando Mora,et al.  Groebner Bases for Non-Commutative Polynomial Rings , 1985, AAECC.

[31]  Doron Zeilberger,et al.  Rational function certification of multisum/integral/``$q$'' identities , 1992 .

[32]  Richard Askey,et al.  The world of q , 1992 .

[33]  Bruno Salvy,et al.  GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.

[34]  R. Risch The problem of integration in finite terms , 1969 .

[35]  Richard P. Stanley,et al.  Differentiably Finite Power Series , 1980, Eur. J. Comb..

[36]  L. J. Rogers Second Memoir on the Expansion of certain Infinite Products , 1893 .

[37]  André Galligo,et al.  Some algorithmic questions on ideals of differential operators , 1985 .

[38]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[39]  Shalosh B. Ekhad,et al.  A short WZ-style proof of Abel's identity , 1995, Electron. J. Comb..

[40]  Marko Petkovsek,et al.  Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..

[41]  Shalosh B. Ekhad,et al.  A WZ-style proof of Jacobi polynomials' generating function , 1992, Discret. Math..

[42]  Peter Paule,et al.  A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..

[43]  P. Cohn Free rings and their relations , 1973 .

[44]  Basil Gordon,et al.  A COMBINATORIAL GENERALIZATION OF THE ROGERS-RAMANUJAN IDENTITIES.* , 1961 .

[45]  Volker Weispfenning,et al.  Finite Gröbner bases in non-Noetherian skew polynomial rings , 1992, ISSAC '92.

[46]  M. Lawrence Glasser,et al.  Some integrals involving Bessel functions , 1993 .

[47]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[48]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[49]  Sergei A. Abramov Rational solutions of linear difference and q-difference equations with polynomial coefficients , 1995, ISSAC '95.

[50]  Sergei A. Abramov,et al.  Fast algorithms to search for the rational solutions of linear differential equations with polynomial coefficients , 1991, ISSAC '91.

[51]  Doron Zeilberger,et al.  A maple program for proving hypergeometric identities , 1991, SIGS.

[52]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[53]  Doron Zeilberger,et al.  A fast algorithm for proving terminating hypergeometric identities , 1990, Discret. Math..

[54]  Alfred J. van der Poorten,et al.  A Proof that Euler Missed... , 2000 .

[55]  Manuel Bronstein,et al.  On polynomial solutions of linear operator equations , 1995, ISSAC '95.

[56]  Mark van Hoeij,et al.  A method for the integration of solutions of Ore equations , 1997, ISSAC.

[57]  C. Sabbah,et al.  Systemes holonomes d'équations aux g-différences , 1993 .

[58]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[59]  Ralf Fröberg,et al.  An introduction to Gröbner bases , 1997, Pure and applied mathematics.

[60]  Philippe Flajolet,et al.  The Average case analysis of algorithms : complex asymptotics and generating functions , 1993 .

[61]  Masaki Kashiwara,et al.  On the holonomic systems of linear differential equations, II , 1978 .

[62]  Nobuki Takayama,et al.  An Approach to the Zero Recognition Problem by Buchberger Algorithm , 1992, J. Symb. Comput..

[63]  George E. Andrews,et al.  MULTIPLE SERIES ROGERS-RAMANUJAN TYPE IDENTITIES , 1984 .

[64]  Volker Weispfenning,et al.  Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..

[65]  Daniel Lazard,et al.  Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..

[66]  D. Zeilberger A holonomic systems approach to special functions identities , 1990 .

[67]  P. Paule The concept of Bailey chains. , 1987 .

[68]  Axel Riese,et al.  A Generalization of Gosper's Algorithm to Bibasic Hypergeometric Summation , 1996, Electron. J. Comb..

[69]  Manuel Bronstein,et al.  On ore rings, linear operators and factorisation , 1993 .

[70]  I. N. Bernshtein The analytic continuation of generalized functions with respect to a parameter , 1972 .

[71]  Peter Paule,et al.  A Mathematica q-Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to q-Hypergeometric Telescoping , 1991 .

[72]  S. A. Abramov,et al.  Rational solutions of linear differential and difference equations with polynomial coefficients , 1991 .

[73]  Carlo Traverso,et al.  “One sugar cube, please” or selection strategies in the Buchberger algorithm , 1991, ISSAC '91.

[74]  Doron Zeilberger,et al.  Rational functions certify combinatorial identities , 1990 .

[75]  G. Andrews,et al.  An analytic generalization of the rogers-ramanujan identities for odd moduli. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[76]  L. Lipshitz,et al.  The diagonal of a D-finite power series is D-finite , 1988 .

[77]  Michael Karr,et al.  Theory of Summation in Finite Terms , 1985, J. Symb. Comput..

[78]  I. N. Bernshtein Modules over a ring of differential operators. Study of the fundamental solutions of equations with constant coefficients , 1971 .

[79]  Doron Zeilberger,et al.  The Method of Differentiating under the Integral Sign , 1990, J. Symb. Comput..

[80]  Manuel Bronstein,et al.  An Introduction to Pseudo-Linear Algebra , 1996, Theor. Comput. Sci..

[81]  Doron Zeilberger,et al.  The Method of Creative Telescoping , 1991, J. Symb. Comput..

[82]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[83]  S. C. Coutinho A primer of algebraic D-modules , 1995 .

[84]  Tom H. Koornwinder,et al.  On Zeilberger's algorithm and its q-analogue: a rigorous description , 1993 .

[85]  Nobuki Takayama,et al.  An algorithm of constructing the integral of a module--an infinite dimensional analog of Gröbner basis , 1990, ISSAC '90.

[86]  Nobuki Takayama,et al.  Gröbner basis and the problem of contiguous relations , 1989 .