The development of colitis in Il10−/− mice is dependent on IL-22

[1]  M. Ohmuraya,et al.  Necroptosis of Intestinal Epithelial Cells Induces Type 3 Innate Lymphoid Cell-Dependent Lethal Ileitis , 2019, iScience.

[2]  N. Powell,et al.  Group 3 ILCs: Peacekeepers or Troublemakers? What's Your Gut Telling You?! , 2019, Front. Immunol..

[3]  K. Bittinger,et al.  Antigen-presenting ILC3 regulate T cell–dependent IgA responses to colonic mucosal bacteria , 2019, The Journal of experimental medicine.

[4]  U. Lindforss,et al.  Innate lymphoid cell type 3–derived interleukin-22 boosts lipocalin-2 production in intestinal epithelial cells via synergy between STAT3 and NF-κB , 2019, The Journal of Biological Chemistry.

[5]  R. Locksley,et al.  Innate Lymphoid Cells: 10 Years On , 2018, Cell.

[6]  T. Mcclanahan,et al.  LAG3+ Regulatory T Cells Restrain Interleukin‐23‐Producing CX3CR1+ Gut‐Resident Macrophages during Group 3 Innate Lymphoid Cell‐Driven Colitis , 2018, Immunity.

[7]  M. Hepworth,et al.  Orchestration of intestinal homeostasis and tolerance by group 3 innate lymphoid cells , 2018, Seminars in immunopathology.

[8]  Michael Y. Gerner,et al.  Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism , 2018, Nature.

[9]  Richard Bonneau,et al.  c-Maf-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont , 2018, Nature.

[10]  L. Hennighausen,et al.  Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells , 2017, The Journal of experimental medicine.

[11]  L. Albenberg,et al.  Gut microbiota and IBD: causation or correlation? , 2017, Nature Reviews Gastroenterology &Hepatology.

[12]  G. Núñez,et al.  The interplay between host immune cells and gut microbiota in chronic inflammatory diseases , 2017, Experimental &Molecular Medicine.

[13]  A. Cavani,et al.  IL‐17 and IL‐22 in immunity: Driving protection and pathology , 2017, European journal of immunology.

[14]  A. Sheh,et al.  Interleukin-22 drives nitric oxide-dependent DNA damage and dysplasia in a murine model of colitis-associated cancer , 2017, Mucosal Immunology.

[15]  S. Targan,et al.  Therapeutic Targets in Inflammatory Bowel Disease: Current and Future , 2016 .

[16]  Reetta Satokari,et al.  Mucosal Prevalence and Interactions with the Epithelium Indicate Commensalism of Sutterella spp. , 2016, Front. Microbiol..

[17]  S. Targan,et al.  A Randomized, Double-Blind, Placebo-Controlled Phase 2 Study of Brodalumab in Patients With Moderate-to-Severe Crohn’s Disease , 2016, The American Journal of Gastroenterology.

[18]  K. Honda,et al.  The microbiota in adaptive immune homeostasis and disease , 2016, Nature.

[19]  C. Ziegler,et al.  Lymphoid-Tissue-Resident Commensal Bacteria Promote Members of the IL-10 Cytokine Family to Establish Mutualism. , 2016, Immunity.

[20]  W. Leonard,et al.  IL-21 Signaling in Immunity , 2016, F1000Research.

[21]  F. Powrie,et al.  ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation , 2016, eLife.

[22]  R. Jenq,et al.  Interleukin-22 Promotes Intestinal Stem Cell-Mediated Epithelial Regeneration , 2015, Nature.

[23]  S. Macdonald,et al.  Differential Requirements for IL-17A and IL-22 in Cecal versus Colonic Inflammation Induced by Helicobacter hepaticus. , 2015, The American journal of pathology.

[24]  T. Lawley,et al.  Pathogen Resistance Mediated by IL-22 Signaling at the Epithelial-Microbiota Interface. , 2015, Journal of molecular biology.

[25]  S. Gaffen,et al.  Gut-Busters: IL-17 Ain't Afraid of No IL-23. , 2015, Immunity.

[26]  Erin Stevens,et al.  Differential Roles for Interleukin-23 and Interleukin-17 in Intestinal Immunoregulation. , 2015, Immunity.

[27]  T. Mcclanahan,et al.  Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. , 2015, Immunity.

[28]  J. Fox,et al.  The Mammalian Microbiome and Its Importance in Laboratory Animal Research. , 2015, ILAR journal.

[29]  M. V. D. van den Brink,et al.  Interleukin-22: immunobiology and pathology. , 2015, Annual review of immunology.

[30]  J. Greenbaum,et al.  IL-10 producing intestinal macrophages prevent excessive anti-bacterial innate immunity by limiting IL-23 synthesis , 2015, Nature Communications.

[31]  W. Strober,et al.  Experimental Models of Inflammatory Bowel Diseases , 2015, Cellular and molecular gastroenterology and hepatology.

[32]  S. Gaffen,et al.  Brothers in Arms: Th17 and Treg Responses in Candida albicans Immunity , 2014, PLoS pathogens.

[33]  S. Dalal,et al.  The microbial basis of inflammatory bowel diseases. , 2014, The Journal of clinical investigation.

[34]  A. Sheh,et al.  Helicobacter hepaticus Infection Promotes Hepatitis and Preneoplastic Foci in Farnesoid X Receptor (FXR) Deficient Mice , 2014, PloS one.

[35]  G. Friedlander,et al.  Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. , 2014, Immunity.

[36]  Y. Belkaid,et al.  Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis , 2014, Science.

[37]  W. Ouyang,et al.  Therapeutic opportunities of the IL-22–IL-22R1 system , 2013, Nature Reviews Drug Discovery.

[38]  T. Oury,et al.  IL-10 restrains IL-17 to limit lung pathology characteristics following pulmonary infection with Francisella tularensis live vaccine strain. , 2013, The American journal of pathology.

[39]  A. Gruber,et al.  Intestinal Microbiota Composition of Interleukin-10 Deficient C57BL/6J Mice and Susceptibility to Helicobacter hepaticus-Induced Colitis , 2013, PloS one.

[40]  M. Oukka,et al.  IL-23R+ innate lymphoid cells induce colitis via interleukin-22-dependent mechanism , 2013, Mucosal Immunology.

[41]  F. Bushman,et al.  Innate lymphoid cells regulate CD4+ T cell responses to intestinal commensal bacteria , 2013, Nature.

[42]  E. Elinav,et al.  IL-22 Deficiency Alters Colonic Microbiota To Be Transmissible and Colitogenic , 2013, The Journal of Immunology.

[43]  F. Powrie,et al.  Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model , 2013, The Journal of experimental medicine.

[44]  R. D. Hatton,et al.  Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. , 2012, Immunity.

[45]  S. Raychaudhuri,et al.  IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. , 2012, Cytokine.

[46]  A. Young,et al.  Fecal Lipocalin 2, a Sensitive and Broadly Dynamic Non-Invasive Biomarker for Intestinal Inflammation , 2012, PloS one.

[47]  F. Bushman,et al.  Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria , 2012, Science.

[48]  C. Akdis,et al.  TH17 and TH22 cells: a confusion of antimicrobial response with tissue inflammation versus protection. , 2012, The Journal of allergy and clinical immunology.

[49]  Marc Vandemeulebroecke,et al.  Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial , 2012, Gut.

[50]  J. Margolick,et al.  A Protective Role for Human IL-10–Expressing CD4+ T Cells in Colitis , 2012, The Journal of Immunology.

[51]  A. Bleich,et al.  Strain‐specific colitis susceptibility in IL10‐deficient mice depends on complex gut microbiota–host interactions , 2012, Inflammatory bowel diseases.

[52]  J. Clemente,et al.  The Impact of the Gut Microbiota on Human Health: An Integrative View , 2012, Cell.

[53]  T. Hohl,et al.  Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. , 2012, Immunity.

[54]  D. C. Cara,et al.  New Insights into the Immunological Changes in IL-10-Deficient Mice during the Course of Spontaneous Inflammation in the Gut Mucosa , 2012, Clinical & developmental immunology.

[55]  Ateequr Rehman,et al.  Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. , 2011, Gastroenterology.

[56]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[57]  Fiona Powrie,et al.  Intestinal homeostasis and its breakdown in inflammatory bowel disease , 2011, Nature.

[58]  J. Versalovic,et al.  Lactobacillus reuteri promotes Helicobacter hepaticus‐associated typhlocolitis in gnotobiotic B6.129P2‐IL‐10tm1Cgn (IL‐10−/−) mice , 2011, Immunology.

[59]  C. Elson,et al.  Th17 Cells Induce Colitis and Promote Th1 Cell Responses through IL-17 Induction of Innate IL-12 and IL-23 Production , 2011, The Journal of Immunology.

[60]  Y. Wan,et al.  Memory/effector (CD45RBlo) CD4 T cells are controlled directly by IL-10 and cause IL-22–dependent intestinal pathology , 2011, The Journal of experimental medicine.

[61]  I. Bergin,et al.  Ulcerative Typhlocolitis Associated With Helicobacter mastomyrinus in Telomerase-Deficient Mice , 2011, Veterinary pathology.

[62]  A. Rudensky,et al.  Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. , 2011, Immunity.

[63]  A. Blauvelt,et al.  IL-23–Mediated Psoriasis-Like Epidermal Hyperplasia Is Dependent on IL-17A , 2011, The Journal of Immunology.

[64]  S. Erdman,et al.  Helicobacter hepaticus infection in mice: models for understanding lower bowel inflammation and cancer , 2010, Mucosal Immunology.

[65]  T. Hibi,et al.  Imbalance of NKp44(+)NKp46(-) and NKp44(-)NKp46(+) natural killer cells in the intestinal mucosa of patients with Crohn's disease. , 2010, Gastroenterology.

[66]  Sallie W. Chisholm,et al.  Unlocking Short Read Sequencing for Metagenomics , 2010, PloS one.

[67]  William A. Walters,et al.  Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample , 2010, Proceedings of the National Academy of Sciences.

[68]  Rob Knight,et al.  Direct sequencing of the human microbiome readily reveals community differences , 2010, Genome Biology.

[69]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[70]  F. Powrie,et al.  Innate lymphoid cells drive IL-23 dependent innate intestinal pathology , 2010, Nature.

[71]  T. Wynn,et al.  Bleomycin and IL-1β–mediated pulmonary fibrosis is IL-17A dependent , 2010, The Journal of experimental medicine.

[72]  A. Macpherson,et al.  Immune adaptations that maintain homeostasis with the intestinal microbiota , 2010, Nature Reviews Immunology.

[73]  R. Knight,et al.  Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. , 2009, Genome research.

[74]  Richard A Flavell,et al.  A protective function for interleukin 17A in T cell–mediated intestinal inflammation , 2009, Nature Immunology.

[75]  A. Murphy,et al.  Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. , 2008, Immunity.

[76]  L. Hale,et al.  Helicobacter typhlonius and Helicobacter rodentium differentially affect the severity of colon inflammation and inflammation-associated neoplasia in IL10-deficient mice. , 2008, Comparative medicine.

[77]  Jianfei Yang,et al.  Interleukin 10 suppresses Th17 cytokines secreted by macrophages and T cells , 2008, European journal of immunology.

[78]  S. Sa,et al.  Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens , 2008, Nature Medicine.

[79]  R. Xavier,et al.  IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. , 2008, The Journal of clinical investigation.

[80]  J. Gordon,et al.  IgA response to symbiotic bacteria as a mediator of gut homeostasis. , 2007, Cell host & microbe.

[81]  A. O’Garra,et al.  Regula'ten' the gut , 2007, Nature Immunology.

[82]  C. Jobin,et al.  Gnotobiotic IL-10−/−;NF-κBEGFP Mice Reveal the Critical Role of TLR/NF-κB Signaling in Commensal Bacteria-Induced Colitis1 , 2007, The Journal of Immunology.

[83]  L. Fouser,et al.  Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides , 2006, The Journal of experimental medicine.

[84]  Rob Knight,et al.  UniFrac – An online tool for comparing microbial community diversity in a phylogenetic context , 2006, BMC Bioinformatics.

[85]  J. Fox,et al.  Detection, eradication, and research implications of Helicobacter infections in laboratory rodents , 2006, Lab Animal.

[86]  H. Weiner,et al.  Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells , 2006, Nature.

[87]  T. Mcclanahan,et al.  IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. , 2006, The Journal of clinical investigation.

[88]  K. Herrmann,et al.  IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. , 2006, American journal of physiology. Gastrointestinal and liver physiology.

[89]  C. Manichanh,et al.  Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach , 2005, Gut.

[90]  A. Takayanagi,et al.  Interleukin-22, a member of the IL-10 subfamily, induces inflammatory responses in colonic subepithelial myofibroblasts. , 2005, Gastroenterology.

[91]  J. Sundberg,et al.  Refined histopathologic scoring system improves power todetect colitis QTL in mice , 2004, Mammalian Genome.

[92]  J. Hampe,et al.  Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease , 2004, Gut.

[93]  J. Fox,et al.  Natural and experimental Helicobacter infections. , 2004, Comparative medicine.

[94]  H. Ishikawa,et al.  Prevention of gut inflammation by Bifidobacterium in dextran sulfate-treated gnotobiotic mice associated with Bacteroides strains isolated from ulcerative colitis patients. , 2003, Microbes and infection.

[95]  Y. Raab,et al.  A new method for the quantification of neutrophil and eosinophil cationic proteins in feces: establishment of normal levels and clinical application in patients with inflammatory bowel disease , 2002, American Journal of Gastroenterology.

[96]  Z. Shen,et al.  Long-term colonization levels of Helicobacter hepaticus in the cecum of hepatitis-prone A/JCr mice are significantly lower than those in hepatitis-resistant C57BL/6 mice. , 2001, Comparative medicine.

[97]  R. Sartor,et al.  Resident Enteric Bacteria Are Necessary for Development of Spontaneous Colitis and Immune System Activation in Interleukin-10-Deficient Mice , 1998, Infection and Immunity.

[98]  J M Ward,et al.  Helicobacter hepaticus Triggers Colitis in Specific-Pathogen-Free Interleukin-10 (IL-10)-Deficient Mice through an IL-12- and Gamma Interferon-Dependent Mechanism , 1998, Infection and Immunity.

[99]  Susan D. Spencer,et al.  The Orphan Receptor CRF2-4 Is an Essential Subunit of the Interleukin 10 Receptor , 1998, The Journal of experimental medicine.

[100]  M. Leach,et al.  Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. , 1996, The Journal of clinical investigation.

[101]  M. Leach,et al.  T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice , 1996, The Journal of experimental medicine.

[102]  K. Rajewsky,et al.  Interleukin-10-deficient mice develop chronic enterocolitis , 1993, Cell.

[103]  M. Colonna,et al.  Innate lymphoid cells: A new paradigm in immunology , 2015, Science.

[104]  C. Klein,et al.  Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans. , 2014, Advances in immunology.

[105]  Jennifer E Towne,et al.  The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. , 2013, The Journal of investigative dermatology.

[106]  高山 哲朗 Imbalance of NKp44[+]NKp46[-] and NKp44[-]NKp46[+] natural killer cells in the intestinal mucosa of patients with Crohn's disease , 2011 .

[107]  A. Andoh,et al.  Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. , 2004, Clinical immunology.