Extraordinary strength–ductility–toughness in Fe–0.08C plain low-carbon steel via introducing weblike martensite: Towards the third generation

[1]  F. Chai,et al.  Effect of intercritical heat treatment on microstructure, nano-size precipitation and mechanical properties of Fe–Ni–Cu–Al low carbon steel , 2022, Materials Science and Engineering: A.

[2]  Y. Liu,et al.  Dual-phase hetero-structured strategy to improve ductility of a low carbon martensitic steel , 2021, Materials Science and Engineering: A.

[3]  T. Pardoen,et al.  Outstanding cracking resistance of fibrous dual phase steels , 2021 .

[4]  Xuefei Chen,et al.  Strengthening and ductilization of laminate dual-phase steels with high martensite content , 2021 .

[5]  M. Soleimani,et al.  Enhanced mechanical properties of dual phase steel via cross rolling and intercritical annealing , 2021 .

[6]  R. Jamaati,et al.  Simultaneous enhancement of strength and ductility in ferrite-martensite steel via increasing the martensite fraction , 2021 .

[7]  R. Jamaati,et al.  A new method to produce dual-phase steel , 2021 .

[8]  J. A. Muñoz,et al.  Ductility and plasticity of ferritic-pearlitic steel after severe plastic deformation , 2020 .

[9]  Feng Liu,et al.  Improved mechanical properties of V-microalloyed dual phase steel by enhancing martensite deformability , 2020 .

[10]  R. Jamaati,et al.  A new 1.2 GPa-strength plain low carbon steel with high ductility obtained by SRDR of martensite and intercritical annealing , 2020 .

[11]  K. Hamad,et al.  Microstructure optimization of low-carbon steel using differential speed rolling deformation followed by annealing , 2020 .

[12]  D. Fan,et al.  Ductile fracture of dual-phase steel sheets under bending , 2020 .

[13]  R. Jamaati,et al.  Microstructure and mechanical properties of IF/St52 steel composite produced by friction stir lap welding , 2020 .

[14]  H. Mirzadeh,et al.  Fine tuning the mechanical properties of dual phase steel via thermomechanical processing of cold rolling and intercritical annealing , 2019, Materials Chemistry and Physics.

[15]  R. Pippan,et al.  Ultrahigh-strength low carbon steel obtained from the martensitic state via high pressure torsion , 2019, Acta Materialia.

[16]  H. Mirzadeh,et al.  Synergistic effects of holding time at intercritical annealing temperature and initial microstructure on the mechanical properties of dual phase steel , 2019, Materials Science and Engineering: A.

[17]  H. Mirzadeh,et al.  Enhancement of mechanical properties of low carbon dual phase steel via natural aging , 2018, Materials Science and Engineering: A.

[18]  Sheng-wu Guo,et al.  Ultrafine grained dual-phase martensite/ferrite steel strengthened and toughened by lamella structure , 2018, Materials Science and Engineering: A.

[19]  H. Mirzadeh,et al.  Fine-grained dual phase steel via intercritical annealing of cold-rolled martensite , 2018, Vacuum.

[20]  I. Alvarez-Armas,et al.  Effect of holding time at an intercritical temperature on the microstructure and tensile properties of a ferrite-martensite dual phase steel , 2018 .

[21]  G. Purcek,et al.  Formability of friction stir processed low carbon steels used in shipbuilding , 2018 .

[22]  M. R. Toroghinejad,et al.  Development of a new dual phase steel with laminated microstructural morphology , 2017 .

[23]  D. Field,et al.  Influence of plastic deformation heterogeneity on development of geometrically necessary dislocation density in dual phase steel , 2016 .

[24]  F. Barlat,et al.  Examination and modeling of void growth kinetics in modern high strength dual phase steels during uniaxial tensile deformation , 2016 .

[25]  Jian-hui Liu,et al.  A Novel Observation on Cementite Formed During Intercritical Annealing of Medium Mn Steel , 2016, Metallurgical and Materials Transactions A.

[26]  Hongshuang Di,et al.  Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel , 2015 .

[27]  L. Toth,et al.  Ultrafine-grain metals by severe plastic deformation , 2014 .

[28]  Toshihiro Tsuchiyama,et al.  Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel , 2014 .

[29]  B. Niroumand,et al.  Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior , 2014 .

[30]  M. R. Toroghinejad,et al.  Comparison of microparticles and nanoparticles effects on the microstructure and mechanical properties of steel-based composite and nanocomposite fabricated via accumulative roll bonding process , 2014 .

[31]  M. R. Toroghinejad,et al.  Effect of SiC nanoparticles on the mechanical properties of steel-based nanocomposite produced by accumulative roll bonding process , 2014 .

[32]  Li Jun,et al.  Effect of heating rate on ferrite recrystallization and austenite formation of cold-roll dual phase steel , 2013 .

[33]  M. R. Toroghinejad,et al.  Fabrication of nanoparticle strengthened IF steel via ARB process , 2013 .

[34]  W. Wang,et al.  Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel , 2013 .

[35]  A. Schwedt,et al.  Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels , 2013 .

[36]  V. Uthaisangsuk,et al.  Microstructure based prediction of strain hardening behavior of dual phase steels , 2012 .

[37]  Saeed Ziaei-Rad,et al.  Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels , 2011 .

[38]  A. Butz,et al.  Mechanisms of void formation during tensile testing in a commercial, dual-phase steel , 2011 .

[39]  M. Calcagnotto,et al.  Effect of grain refinement to 1 μm on strength and toughness of dual-phase steels , 2010 .

[40]  M. Calcagnotto,et al.  Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD , 2010 .

[41]  A. Ekrami,et al.  The effect of dynamic strain aging on fatigue properties of dual phase steels with different martensite morphology , 2009 .

[42]  S. Nath,et al.  Ultrafine-grained steel fabricated using warm multiaxial forging: Microstructure and mechanical properties , 2009 .

[43]  E. Rauch,et al.  Texture and microstructure of ultra low carbon steel processed by equal channel angular extrusion , 2009 .

[44]  C. Lesch,et al.  Rapid Transformation Annealing: a Novel Method for Grain Refinement of Cold-Rolled Low-Carbon Steels , 2007 .

[45]  W. Poole,et al.  Austenite formation during intercritical annealing , 2004 .

[46]  T. Langdon,et al.  Processing of a low-carbon steel by equal-channel angular pressing , 2002 .

[47]  R. Priestner,et al.  Retained austenite in dual-phase silicon steels and its effect on mechanical properties , 2001 .

[48]  Yong-Seog Kim,et al.  Thermal stability and mechanical properties of ultrafine grained low carbon steel , 2000 .

[49]  D. Casellas,et al.  Microstructural effects on fracture toughness of ultra-high strength dual phase sheet steels , 2021 .

[50]  G. P. Chaudhari,et al.  Mechanical and corrosion behavior of plain low carbon dual-phase steels , 2011 .

[51]  Dierk Raabe,et al.  Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging , 2011 .