Saccadic body turns in walking Drosophila

Drosophila melanogaster structures its optic flow during flight by interspersing translational movements with abrupt body rotations. Whether these “body saccades” are accompanied by steering movements of the head is a matter of debate. By tracking single flies moving freely in an arena, we now discovered that walking Drosophila also perform saccades. Movement analysis revealed that the flies separate rotational from translational movements by quickly turning their bodies by 15 degrees within a tenth of a second. Although walking flies moved their heads by up to 20 degrees about their bodies, their heads moved with the bodies during saccadic turns. This saccadic strategy contrasts with the head saccades reported for e.g., blowflies and honeybees, presumably reflecting optical constraints: modeling revealed that head saccades as described for these latter insects would hardly affect the retinal input in Drosophila because of the lower acuity of its compound eye. The absence of head saccades in Drosophila was associated with the absence of haltere oscillations, which seem to guide head movements in other flies. In addition to adding new twists to Drosophila walking behavior, our analysis shows that Drosophila does not turn its head relative to its body when turning during walking.

[1]  M Egelhaaf,et al.  Mimicking honeybee eyes with a 280° field of view catadioptric imaging system , 2010, Bioinspiration & biomimetics.

[2]  H. Markl,et al.  Head Movements in Flies ( Calliphora ) Produced by Deflexion of the Halteres , 1980 .

[3]  Fionn Murtagh,et al.  Algorithms for hierarchical clustering: an overview , 2012, WIREs Data Mining Knowl. Discov..

[4]  J. Levine,et al.  Drosophila melanogaster females change mating behaviour and offspring production based on social context , 2012, Proceedings of the Royal Society B: Biological Sciences.

[5]  J. Zeil Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) , 1993, Journal of Comparative Physiology A.

[6]  Roger C. Hardie,et al.  Light Adaptation in Drosophila Photoreceptors: II. Rising Temperature Increases the Bandwidth of Reliable Signaling , 2001 .

[7]  Jamey S. Kain,et al.  Leg-tracking and automated behavioural classification in Drosophila , 2012, Nature Communications.

[8]  Martin Egelhaaf,et al.  Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets , 2014, Front. Behav. Neurosci..

[9]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[10]  Mikko Vähäsöyrinki,et al.  Interactions between light-induced currents, voltage-gated currents, and input signal properties in Drosophila photoreceptors. , 2004, Journal of neurophysiology.

[11]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 1979, Journal of comparative physiology.

[12]  Holger G. Krapp,et al.  Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora , 2000, Journal of Comparative Physiology A.

[13]  Barry J. Dickson,et al.  Neuronal Control of Drosophila Walking Direction , 2014, Science.

[14]  G. Blaj Walking and Vision in Blowflies , 2004 .

[15]  A. Borst,et al.  Central gating of fly optomotor response , 2010, Proceedings of the National Academy of Sciences.

[16]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[17]  J. Zeil The control of optic flow during learning flights , 1996, Journal of Comparative Physiology A.

[18]  A. Büschges,et al.  Inter-leg coordination in the control of walking speed in Drosophila , 2013, Journal of Experimental Biology.

[19]  Boaz Cook,et al.  The stum Gene Is Essential for Mechanical Sensing in Proprioceptive Neurons , 2014, Science.

[20]  S. B. Laughlin,et al.  Angular sensitivity of the retinula cells of dark-adapted worker bee , 1971, Zeitschrift für vergleichende Physiologie.

[21]  Martin Egelhaaf,et al.  Head and body stabilization in blowflies walking on differently structured substrates , 2012, Journal of Experimental Biology.

[22]  T. Poggio,et al.  On head and body movements of flying flies , 1977, Biological Cybernetics.

[23]  Y. Rao,et al.  Social regulation of aggression by pheromonal activation of Or65a olfactory neurons in Drosophila , 2011, Nature Neuroscience.

[24]  J. Trosko,et al.  AN INTEGRATIVE MODEL , 1978 .

[25]  M. Land Motion and vision: why animals move their eyes , 1999, Journal of Comparative Physiology A.

[26]  M. Dickinson,et al.  An Integrative Model of Insect Flight Control (Invited) , 2006 .

[27]  Roger C. Hardie,et al.  Light Adaptation in Drosophila Photoreceptors: I. Response Dynamics and Signaling Efficiency at 25°C , 2001 .

[28]  Mikko Juusola,et al.  Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands , 2011, Proceedings of the National Academy of Sciences.

[29]  Bart R. H. Geurten,et al.  Monogenic heritable autism gene neuroligin impacts Drosophila social behaviour , 2013, Behavioural Brain Research.

[30]  Karl Kral,et al.  Motion parallax as a source of distance information in locusts and mantids , 2007, Journal of Insect Behavior.

[31]  J. Gibson,et al.  Parallax and perspective during aircraft landings. , 1955, The American journal of psychology.

[32]  Richard M. Murray,et al.  Discriminating External and Internal Causes for Heading Changes in Freely Flying Drosophila , 2013, PLoS Comput. Biol..

[33]  Michael B. Reiser,et al.  Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.

[34]  Martin Egelhaaf,et al.  The fine structure of honeybee head and body yaw movements in a homing task , 2010, Proceedings of the Royal Society B: Biological Sciences.

[35]  R. Hengstenberg,et al.  The halteres of the blowfly Calliphora , 1994, Journal of Comparative Physiology A.

[36]  Saeed Saremi,et al.  Hierarchical model of natural images and the origin of scale invariance , 2013, Proceedings of the National Academy of Sciences.

[37]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[38]  S. Tsunoda,et al.  Shal/Kv4 Channels Are Required for Maintaining Excitability during Repetitive Firing and Normal Locomotion in Drosophila , 2011, PloS one.

[39]  S. N. Fry,et al.  The Aerodynamics of Free-Flight Maneuvers in Drosophila , 2003, Science.

[40]  R. Mann,et al.  Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster , 2013, eLife.

[41]  M. Dickinson,et al.  An Integrative Model of Insect Flight Control , 2006 .

[42]  G. Ribak,et al.  Saccadic head rotations during walking in the stalk-eyed fly (Cyrtodiopsis dalmanni) , 2009, Proceedings of the Royal Society B: Biological Sciences.

[43]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[44]  Martin Egelhaaf,et al.  Gaze characteristics of freely walking blowflies Calliphora vicina in a goal-directed task , 2014, Journal of Experimental Biology.

[45]  Mark A. Frye,et al.  Figure–ground discrimination behavior in Drosophila. II. Visual influences on head movement behavior , 2014, Journal of Experimental Biology.

[46]  E. Salinas,et al.  Perceptual decision making in less than 30 milliseconds , 2010, Nature Neuroscience.

[47]  M. Land Visual acuity in insects. , 1997, Annual review of entomology.

[48]  J. V. van Hateren,et al.  Modelling the power spectra of natural images: statistics and information. , 1996, Vision research.

[49]  J. Zeil Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) , 1993, Journal of Comparative Physiology A.

[50]  M. F. LAND,et al.  Head Movement of Flies during Visually Guided Flight , 1973, Nature.

[51]  K. VijayRaghavan,et al.  Developmental origins and architecture of Drosophila leg motoneurons , 2012, The Journal of comparative neurology.

[52]  M. Dickinson,et al.  A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster , 2006, Journal of Experimental Biology.

[53]  R. Hardie,et al.  Phototransduction in Drosophila melanogaster. , 2001, The Journal of experimental biology.

[54]  Michael H. Dickinson,et al.  Integrative Model of Drosophila Flight , 2008 .

[55]  C. Schilstra,et al.  Stabilizing gaze in flying blowflies , 1998, Nature.

[56]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[57]  J. H. van Hateren,et al.  Modelling the Power Spectra of Natural Images: Statistics and Information , 1996, Vision Research.

[58]  Michael H. Dickinson,et al.  Flies Evade Looming Targets by Executing Rapid Visually Directed Banked Turns , 2014, Science.

[59]  Roland Strauss,et al.  Virtual-Reality Techniques Resolve the Visual Cues Used by Fruit Flies to Evaluate Object Distances , 2002, Current Biology.

[60]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[61]  J. Zeil Visual homing: an insect perspective , 2012, Current Opinion in Neurobiology.

[62]  R. Mann,et al.  Dual role for Hox genes and Hox co-factors in conferring leg motoneuron survival and identity in Drosophila , 2013, Development.

[63]  R. Strauss,et al.  Coordination of legs during straight walking and turning in Drosophila melanogaster , 1990, Journal of Comparative Physiology A.

[64]  M. Egelhaaf,et al.  Variability of blowfly head optomotor responses , 2009, Journal of Experimental Biology.

[65]  Martin Egelhaaf,et al.  A syntax of hoverfly flight prototypes , 2010, Journal of Experimental Biology.

[66]  S. Laughlin,et al.  Temperature and the temporal resolving power of fly photoreceptors , 2000, Journal of Comparative Physiology A.

[67]  Michael F. Land,et al.  Visual tracking and pursuit: Humans and arthropods compared , 1992 .

[68]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[69]  Martin Egelhaaf,et al.  Identifying Prototypical Components in Behaviour Using Clustering Algorithms , 2010, PloS one.

[70]  J. H. van Hateren,et al.  Saccadic head and thorax movements in freely walking blowflies , 2004, Journal of Comparative Physiology A.

[71]  J. Koenderink,et al.  Facts on optic flow , 1987, Biological Cybernetics.

[72]  Michael B. Reiser,et al.  Corrigendum: Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior , 2011, Nature Methods.

[73]  T. S. Collett,et al.  Visual spatial memory in a hoverfly , 2004, Journal of comparative physiology.

[74]  Jochen Zeil,et al.  The territorial flight of male houseflies (Fannia canicularis L.) , 1986, Behavioral Ecology and Sociobiology.

[75]  Jacob Engelmann,et al.  Motor patterns during active electrosensory acquisition , 2014, Front. Behav. Neurosci..

[76]  G. Nalbach The halteres of the blowfly Calliphora , 1993, Journal of Comparative Physiology A.

[77]  William S. Farren The Aerodynamic Art , 1956, The Journal of the Royal Aeronautical Society.

[78]  G. W. Milligan,et al.  Methodology Review: Clustering Methods , 1987 .

[79]  J. H. van Hateren,et al.  Angular sensitivity of blowfly photoreceptors: intracellular measurements and wave-optical predictions , 1984, Journal of Comparative Physiology A.

[80]  Karin Nordström,et al.  Small object detection neurons in female hoverflies , 2006, Proceedings of the Royal Society B: Biological Sciences.

[81]  Winfried Scharlau,et al.  Darmstadt, Technische Hochschule , 1990 .

[82]  Mark A. Frye,et al.  Figure–ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses , 2014, Journal of Experimental Biology.

[83]  T. Poggio,et al.  3-D Analysis of the Flight Trajectories of Flies (Drosophila melanogaster) , 1980 .