Non-thermal emission from cosmic rays accelerated in H II regions

Context. Radio observations at metre-centimetre wavelengths shed light on the nature of the emission of H II regions. Usually this category of objects is dominated by thermal radiation produced by ionised hydrogen, namely protons and electrons. However, a number of observational studies have revealed the existence of H II regions with a mixture of thermal and non-thermal radiation. The latter represents a clue as to the presence of relativistic electrons. However, neither the interstellar cosmic-ray electron flux nor the flux of secondary electrons, produced by primary cosmic rays through ionisation processes, is high enough to explain the observed flux densities. Aims. We investigate the possibility of accelerating local thermal electrons up to relativistic energies in H II region shocks. Methods. We assumed that relativistic electrons can be accelerated through the first-order Fermi acceleration mechanism and we estimated the emerging electron fluxes, the corresponding flux densities, and the spectral indexes. Results. We find flux densities of the same order of magnitude of those observed. In particular, we applied our model to the “deep south” (DS) region of Sagittarius B2 and we succeeded in reproducing the observed flux densities with an accuracy of less than 20% as well as the spectral indexes. The model also gives constraints on magnetic field strength (0.3–4 mG), density (1–9 × 104 cm−3), and flow velocity in the shock reference frame (33–50 km s−1) expected in DS. Conclusions. We suggest a mechanism able to accelerate thermal electrons inside H II regions through the first-order Fermi acceleration. The existence of a local source of relativistic electrons can explain the origin of both the observed non-thermal emission and the corresponding spectral indexes.

[1]  E. Feigelson,et al.  High-Energy Processes in Young Stellar Objects , 1999 .

[2]  Cea,et al.  Cosmic-ray acceleration in young protostars , 2015, 1509.06416.

[3]  M. Hoare,et al.  Hydrodynamical models of cometary H II regions , 2017, 1703.05379.

[4]  F. Rieger,et al.  A Microscopic Analysis of Shear Acceleration , 2006, astro-ph/0610187.

[5]  S. Bowyer,et al.  Parameter estimation in X-ray astronomy , 1976 .

[6]  Cea,et al.  Protostars: Forges of cosmic rays? , 2016, 1602.08495.

[7]  J. Moran,et al.  Posible radio spectral indices from inhomogeneous free - free sources , 1993 .

[8]  D. Ellison,et al.  A Simple Model of Nonlinear Diffusive Shock Acceleration , 1999 .

[9]  Edward Bruce Churchwell,et al.  Ultra-Compact HII Regions and Massive Star Formation , 2002 .

[10]  M. Perucho,et al.  The Highly Collimated Radio Jet of HH 80–81: Structure and Nonthermal Emission , 2017, 1711.02554.

[11]  Spain.,et al.  Survey of intermediate/high mass star-forming regions at centimeter and millimeter wavelengths , 2008, 0802.3132.

[12]  J. Ballet,et al.  Observational constraints on energetic particle diffusion in young supernovae remnants: amplified magnetic field and maximum energy , 2006, astro-ph/0603723.

[13]  J. Giacalone,et al.  Magnetic Field Amplification by Shocks in Turbulent Fluids , 2007 .

[14]  Marco Padovani,et al.  Synchrotron emission in molecular cloud cores: the SKA view , 2018, Astronomy & Astrophysics.

[15]  M. Begelman,et al.  Plasma astrophysics. , 1993, Science.

[16]  L. Mundy,et al.  The Co-ordinated Radio and Infrared Survey for High-Mass Star Formation-II. Source Catalogue , 2013 .

[17]  C. Heiles,et al.  Magnetic field strengths in the HII regions S117, S119, and S264. , 1981 .

[18]  D. Kakkad Radiative Processes in Astrophysics , 2014 .

[19]  A. Lazarian,et al.  Production of the large scale superluminal ejections of the microquasar GRS 1915+105 by violent magnetic reconnection , 2005 .

[20]  A. Marcowith,et al.  The 511 keV emission from positron annihilation in the Galaxy , 2010, 1009.4620.

[21]  H. Beuther,et al.  A search for hypercompact H iiregions in the Galactic Plane , 2018, Monthly Notices of the Royal Astronomical Society.

[22]  P. Caselli,et al.  INTERSTELLAR DUST CHARGING IN DENSE MOLECULAR CLOUDS: COSMIC RAY EFFECTS , 2015, 1507.00692.

[23]  Firenze,et al.  Cosmic-ray ionization of molecular clouds , 2009, 0904.4149.

[24]  F. Lockman,et al.  A Survey of Radio H II Regions in the Northern Sky (Lockman+ 1989) , 1989 .

[25]  W. Webber,et al.  GALACTIC COSMIC RAYS IN THE LOCAL INTERSTELLAR MEDIUM: VOYAGER 1 OBSERVATIONS AND MODEL RESULTS , 2016, The Astrophysical journal.

[26]  J. Pandian,et al.  SEARCHING FOR NEW HYPERCOMPACT H ii REGIONS , 2011, 1105.4715.

[27]  G. Garay,et al.  DECIPHERING THE IONIZED GAS CONTENT IN THE MASSIVE STAR-FORMING COMPLEX G75.78+0.34 , 2013, 1302.3018.

[28]  Cea,et al.  Cosmic-ray ionisation in collapsing clouds , 2013, 1310.2158.

[29]  B. Koribalski,et al.  Australia Telescope Compact Array Radio Imaging of the Proplyd-like Objects in the Giant H II Region NGC 3603 , 2002, astro-ph/0201091.

[30]  L. Mundy,et al.  THE COORDINATED RADIO AND INFRARED SURVEY FOR HIGH-MASS STAR FORMATION. II. SOURCE CATALOG , 2012, 1211.7116.

[31]  A. Marcowith,et al.  The physical and chemical structure of Sagittarius B2 , 2018, Astronomy & Astrophysics.

[32]  Spain.,et al.  Effects of magnetic fields on the cosmic-ray ionization of molecular cloud cores , 2011, 1104.5445.

[33]  On the role of injection in kinetic approaches to non‐linear particle acceleration at non‐relativistic shock waves , 2005, astro-ph/0505351.

[34]  E. Priest,et al.  Plasma astrophysics : Saas Fee Advanced Course 24. Swiss Society for Astrophysics and Astronomy , 1994 .

[35]  R. Klessen,et al.  UNDERSTANDING SPATIAL AND SPECTRAL MORPHOLOGIES OF ULTRACOMPACT H ii REGIONS , 2010, 1003.4998.

[36]  A. Crusius-Watzel Diffusive shock acceleration in the lobes of the Serpens triple radio source , 1990 .

[37]  C. Kramer,et al.  Deuteration around the ultracompact HII region Monoceros R2 , 2014, 1406.1373.

[38]  B. Gaensler,et al.  MAGNETIC FIELDS IN LARGE-DIAMETER H ii REGIONS REVEALED BY THE FARADAY ROTATION OF COMPACT EXTRAGALACTIC RADIO SOURCES , 2011, 1106.0931.

[39]  E. Churchwell,et al.  The morphologies and physical properties of ultracompact H II regions , 1989 .

[40]  S. Ghosh,et al.  STAR-FORMING ACTIVITY IN THE H ii REGIONS ASSOCIATED WITH THE IRAS 17160–3707 COMPLEX , 2016, 1607.01267.

[41]  A. Marcowith,et al.  Turbulence and particle acceleration in collisionless supernovae remnant shocks. I. Anisotropic spec , 2006, astro-ph/0603461.

[42]  J. Jokipii Rate of energy gain and maximum energy in diffusive shock acceleration , 1987 .

[43]  R. Cesaroni Massive star birth : a crossroads of astrophysics : proceedings of the 227th symposium of the International Astronomical Union, held in Acireale, Italy, May 16-20, 2005 , 2005 .

[44]  G. Blumenthal,et al.  BREMSSTRAHLUNG, SYNCHROTRON RADIATION, AND COMPTON SCATTERING OF HIGH- ENERGY ELECTRONS TRAVERSING DILUTE GASES. , 1970 .

[45]  W. Goss,et al.  Broad Radio Recombination Lines from Hypercompact H II Regions , 2004 .

[46]  E. Berezhko,et al.  Cosmic rays, radio and gamma-ray emission from the remnant of supernova 1987A , 2000 .

[47]  R. Klessen,et al.  Radio continuum emission in the northern Galactic plane: Sources and spectral indices from the THOR survey (Corrigendum) , 2018, Astronomy & Astrophysics.

[48]  L. Mundy,et al.  The Coordinated Radio and Infrared Survey for High-Mass Star Formation (The CORNISH Survey). I. Survey Design , 2012, 1208.3351.

[49]  H Germany,et al.  Cosmic-ray ionisation in circumstellar discs , 2018, Astronomy & Astrophysics.

[50]  W. Goss,et al.  Radio continuum and radio recombination line observations of Sagittarius B2 , 1993 .

[51]  R. Klessen,et al.  H II REGIONS: WITNESSES TO MASSIVE STAR FORMATION , 2010, 1001.2470.

[52]  Navrangpura,et al.  Star formation towards the southern cometary H II region IRAS 17256-3631 , 2015, 1512.00987.

[53]  L. Drury,et al.  An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas , 1983 .

[54]  C. Brogan,et al.  Protostellar Outflows at the EarliesT Stages (POETS) , 2019, Astronomy & Astrophysics.

[55]  S. Molinari,et al.  Different evolutionary stages in massive star formation - Centimeter continuum and H2O maser emission with ATCA , 2012, 1211.0847.

[56]  Magnetic fields in molecular clouds , 2012 .

[57]  K. Menten,et al.  Synchrotron Emission from the H 2O Maser Source in W3(OH) , 1995 .