Geometry of an elliptic difference equation related to Q4

In this paper, we investigate a nonlinear non-autonomous elliptic difference equation, which was constructed by Ramani, Carstea and Grammaticos by integrable deautonomization of a periodic reduction of the discrete Krichever-Novikov equation, or Q4. We show how to construct it as a birational mapping on a rational surface blown up at eight points in $\mathbb P^1\times \mathbb P^1$, and find its affine Weyl symmetry, placing it in the geometric framework of the Painlev\'e equations. The initial value space is ell-$A_0^{(1)}$ and its symmetry group is $W(F_4^{(1)})$. We show that the deautonomization is consistent with the lattice-geometry of Q4 by giving an alternative construction, which is a reduction from Q4 in the usual sense. A more symmetric reduction of the same kind provides another example of a second-order integrable elliptic difference equation.

[1]  H. Sakai,et al.  Riccati solutions of discrete Painlevé equations with Weyl group symmetry of type E8(1) , 2002, nlin/0210040.

[2]  V. Kac Infinite dimensional Lie algebras: Frontmatter , 1990 .

[3]  Y. Ohta,et al.  10E9 solution to the elliptic Painlevé equation , 2003 .

[4]  岡本 和夫,et al.  Sur les feuilletages associes aux equations du second ordre a points critiques fixes de P. Painleve , 1978 .

[5]  A. Bobenko,et al.  Discrete nonlinear hyperbolic equations. Classification of integrable cases , 2007, 0705.1663.

[6]  V. E. Adler B\"acklund transformation for the Krichever-Novikov equation , 1996, solv-int/9707015.

[7]  A. Ramani,et al.  From Integrable Lattices to Non-QRT Mappings , 2006 .

[8]  A. Veselov,et al.  Cauchy Problem for Integrable Discrete Equations on Quad-Graphs , 2002, math-ph/0211054.

[9]  Alexander I. Bobenko,et al.  Communications in Mathematical Physics Classification of Integrable Equations on Quad-Graphs. The Consistency Approach , 2003 .

[10]  H. Sakai,et al.  Rational Surfaces Associated with Affine Root Systems¶and Geometry of the Painlevé Equations , 2001 .

[11]  D. Ortland,et al.  Point sets in projective spaces and theta functions , 1988 .

[12]  Nobutaka Nakazono,et al.  A systematic approach to reductions of type-Q ABS equations , 2013, 1307.3390.

[13]  E. Looijenga Rational surfaces with an anti-canonical cycle , 1981 .

[14]  J. Atkinson Singularities of Type-Q ABS Equations , 2011, 1102.2675.

[15]  M. P. Bellon,et al.  Algebraic Entropy , 1999 .

[16]  A. Ramani,et al.  On the non-autonomous form of the Q4 mapping and its relation to elliptic Painlevé equations , 2009 .

[17]  T. Takenawa Algebraic entropy and the space of initial values for discrete dynamical systems , 2001, nlin/0103011.

[18]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[19]  T. Willmore Algebraic Geometry , 1973, Nature.

[20]  J. Hietarinta Searching for CAC-maps , 2005 .

[21]  Y. Suris,et al.  Q4: integrable master equation related to an elliptic curve , 2004 .

[22]  K. Kajiwara,et al.  Projective Reduction of the Discrete Painlevé System of Type (A2 + A1)(1) , 2009, 0910.4439.

[23]  Kazuo Okamoto,et al.  Sur les feuilletages associés aux équation du second ordre à points critiques fixes de P. Painlevé Espaces des conditions initiales , 1979 .

[24]  F. Nijhoff Lax pair for the Adler (lattice Krichever–Novikov) system , 2001, nlin/0110027.

[25]  F. Nijhoff,et al.  Solutions of Adler’s Lattice Equation Associated with 2-Cycles of the Bäcklund Transformation , 2007, 0710.2643.