Selection of Vine Copulas

Vine copula models have proven themselves as a very flexible class of multivariate copula models with regard to symmetry and tail dependence for pairs of variables. The full specification of a vine model requires the choice of a vine tree structure, the copula families for each pair copula term and their corresponding parameters. In this survey we discuss the different approaches, both frequentist and Bayesian, for these model choices so far and point to open problems.

[1]  Claudia Czado,et al.  Detecting regime switches in the dependence structure of high dimensional financial data , 2012, 1202.2009.

[2]  Dorota Kurowicka,et al.  Dependence Modeling: Vine Copula Handbook , 2010 .

[3]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[4]  Jun Yan,et al.  Modeling Multivariate Distributions with Continuous Margins Using the copula R Package , 2010 .

[5]  C. Czado,et al.  Bayesian inference for multivariate copulas using pair-copula constructions. , 2010 .

[6]  R. Shibata,et al.  PARTIAL CORRELATION AND CONDITIONAL CORRELATION AS MEASURES OF CONDITIONAL INDEPENDENCE , 2004 .

[7]  Claudia Czado,et al.  Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50 , 2013 .

[8]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[9]  Claudia Czado,et al.  Pair-copula constructions for non-Gaussian DAG models. , 2012 .

[10]  Claudia Czado,et al.  Pair-Copula Bayesian Networks , 2012, 1211.5620.

[11]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[12]  Jun Yan,et al.  FAST LARGE-SAMPLE GOODNESS-OF-FIT TESTS FOR COPULAS , 2011 .

[13]  Roger M. Cooke,et al.  Hybrid Method for Quantifying and Analyzing Bayesian Belief Nets , 2006, Qual. Reliab. Eng. Int..

[14]  Eike Christian Brechmann,et al.  Statistical Inference of Vine Copulas using the R-Package VineCopula , 2013 .

[15]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[16]  Claudia Czado,et al.  Selection strategies for regular vine copulae , 2013 .

[17]  H. Joe,et al.  The Estimation Method of Inference Functions for Margins for Multivariate Models , 1996 .

[18]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[19]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[20]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[21]  Claudia Czado,et al.  Simplified pair copula constructions - Limitations and extensions , 2013, J. Multivar. Anal..

[22]  Hans Manner,et al.  Estimation and Model Selection of Copulas with an Application to Exchange Rates , 2007 .

[23]  Aristidis K. Nikoloulopoulos,et al.  Vine copulas with asymmetric tail dependence and applications to financial return data , 2012, Comput. Stat. Data Anal..

[24]  Kjersti Aas,et al.  On the simplified pair-copula construction - Simply useful or too simplistic? , 2010, J. Multivar. Anal..

[25]  Claudia Czado,et al.  Pair-Copula Constructions of Multivariate Copulas , 2010 .

[26]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[27]  Claudia Czado,et al.  Maximum likelihood estimation of mixed C-vines with application to exchange rates , 2012 .

[28]  Göran Kauermann,et al.  Flexible Pair-Copula Estimation in D-vines with Penalized Splines , 2014 .

[29]  Roger M. Cooke,et al.  Uncertainty Analysis with High Dimensional Dependence Modelling: Kurowicka/Uncertainty Analysis with High Dimensional Dependence Modelling , 2006 .

[30]  C. Czado,et al.  Modeling high dimensional time-varying dependence using D-vine SCAR models , 2012, 1202.2008.

[31]  Erik Mønness,et al.  Industrial Statistics: Application and Development , 2006, Qual. Reliab. Eng. Int..

[32]  K. Aas,et al.  Models for construction of multivariate dependence – a comparison study , 2009 .

[33]  Claudia Czado,et al.  Pair Copula Constructions for Multivariate Discrete Data , 2012 .

[34]  Claudia Czado,et al.  Efficient Bayesian inference for stochastic time-varying copula models , 2012, Comput. Stat. Data Anal..

[35]  Claudia Czado,et al.  Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..

[36]  Matthias Fischer,et al.  An empirical analysis of multivariate copula models , 2009 .

[37]  Beatriz Vaz de Melo Mendes,et al.  Pair-copulas modeling in finance , 2010 .

[38]  Nikolaos Limnios,et al.  Modern Statistical and Mathematical Methods in Reliability , 2005, Series on Quality, Reliability and Engineering Statistics.

[39]  Andréas Heinen,et al.  Asymmetric CAPM Dependence for Large Dimensions: The Canonical Vine Autoregressive Copula Model , 2008 .

[40]  Ingrid Hobæk Haff Comparison of estimators for pair-copula constructions , 2012, J. Multivar. Anal..

[41]  Lorán Chollete,et al.  Modeling International Financial Returns with a Multivariate Regime-switching Copula , 2009 .

[42]  D. Kurowicka,et al.  Distribution - Free Continuous Bayesian Belief Nets , 2004 .

[43]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[44]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[45]  Claudia Czado,et al.  Simplified Pair Copula Constructions --- Limits and Extensions , 2012 .

[46]  U. Schepsmeier,et al.  Is there significant time-variation in multivariate copulas? , 2012, 1205.4841.

[47]  Jun Yan,et al.  A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems , 2011, Stat. Comput..

[48]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[49]  E. Brechmann,et al.  Truncated and simplified regular vines and their applications , 2010 .

[50]  Collin Carbno,et al.  Uncertainty Analysis With High Dimensional Dependence Modelling , 2007, Technometrics.

[51]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[52]  Ludger Rüschendorf,et al.  Distributions with fixed marginals and related topics , 1999 .

[53]  C. Czado,et al.  Bayesian model selection for D‐vine pair‐copula constructions , 2011 .

[54]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[55]  Eike Christian Brechmann,et al.  Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine , 2013 .

[56]  Kevin A. Clarke A Simple Distribution-Free Test for Nonnested Model Selection , 2007, Political Analysis.

[57]  Göran Kauermann,et al.  Flexible pair-copula estimation in D-vines using bivariate penalized splines , 2014, Stat. Comput..

[58]  Johan Segers,et al.  Nonparametric estimation of pair-copula constructions with the empirical pair-copula , 2012, Comput. Stat. Data Anal..

[59]  Christian Genest,et al.  Beyond simplified pair-copula constructions , 2012, J. Multivar. Anal..

[60]  Eike Christian Brechmann,et al.  COPAR-multivariate time series modeling using the copula autoregressive model , 2012 .

[61]  H. Joe Asymptotic efficiency of the two-stage estimation method for copula-based models , 2005 .

[62]  Ingrid Hobæk Haff,et al.  Parameter estimation for pair-copula constructions , 2013, 1303.4890.

[63]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[64]  C. Czado,et al.  Truncated regular vines in high dimensions with application to financial data , 2012 .

[65]  Dorota Kurowicka,et al.  Optimal Truncation of Vines , 2010 .

[66]  C. Czado,et al.  Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence , 2010 .

[67]  Christian Genest,et al.  Conditions for the Asymptotic Semiparametric Efficiency of an Omnibus Estimator of Dependence Parame , 2000 .

[68]  Carles M. Cuadras,et al.  Distributions With Given Marginals and Statistical Modelling , 2002 .