The effect of frequency-dependent microphone directionality on horizontal localization performance in hearing-aid users

Abstract Frequency-dependent microphone directionality alters the spectral shape of sound as a function of arrival azimuth. The influence of this on horizontal-plane localization performance was investigated. Using a 360° loudspeaker array and five stimuli with different spectral characteristics, localization performance was measured on 21 hearing-impaired listeners when wearing no hearing aids and aided with no directionality, partial (from 1 and 2 kHz) directionality, and full directionality. The test schemes were also evaluated in everyday life. Without hearing aids, localization accuracy was significantly poorer than normative data. Due to inaudibility of high-frequency energy, front/back reversals were prominent. Front/back reversals remained prominent when aided with omnidirectional microphones. For stimuli with low-frequency emphasis, directionality had no further effect on localization. For stimuli with sufficient mid- and high-frequency information, full directionality had a small positive effect on front/back localization but a negative effect on left/right localization. Partial directionality further improved front/back localization and had no significant effect on left/right localization. The field test revealed no significant effects. The alternative spectral cues provided by frequency-dependent directionality improve front/back localization in hearing-aid users. Sumario La direccionalidad de un micrófono frecuencia-dependiente altera la configuración espectral del sonido como función del azimuth de llegada. Se investigó la influencia de esto en el desempeño para la localización en el plano horizontal. Usando un sistema de altoparlante 360° y cinco estímulos con diferentes características espectrales, se midió el desempeño para la localización en 21 hipoacúsicos, sin usar auxiliares auditivos y con el apoyo de no direccionalidad, de direccionalidad parcial (de 1 y 2 kHz) y con direccionalidad total. Los esquemas de la prueba también se evaluaron en la vida cotidiana. Sin auxiliares auditivos, la precisión para localizar fue significativamente más pobre que los datos normativos. Debido a la inaudibilidad de la energía de altas frecuencias, las inversiones frente/atrás fueron prominentes. Las inversiones frente/atrás permanecieron prominentes cuando hubo apoyo con micrófonos omnidireccionales. Para estímulos con énfasis en frecuencias graves, la direccionalidad no tuvo un efecto adicional en la localización. Con estímulos cuya información de frecuencias medias y altas fue suficiente, la direccionalidad total tuvo un pequeño efecto positivo para la localización frente/atrás, pero un efecto negativo en la localización izquierda/derecha. La direccionalidad parcial mejoró adicionalmente la localización frente/atrás pero no tuvo un efecto significativo en la localización izquierda/derecha. La prueba de campo no mostró efectos significativos. Las claves espectrales alternativas proporcionadas por la direccionalidad frecuencia-dependiente, mejoraron la localización frente/atrás en usuarios de auxiliares auditivos.

[1]  Sharon M. Abel,et al.  Accuracy versus choice response time in sound localization , 1996 .

[2]  W Noble,et al.  A comparison of different binaural hearing aid systems for sound localization in the horizontal and vertical planes. , 1990, British journal of audiology.

[3]  W. Hartmann Localization of sound in rooms. , 1983, The Journal of the Acoustical Society of America.

[4]  B. Papsin,et al.  The effect of aging on horizontal plane sound localization. , 2000, The Journal of the Acoustical Society of America.

[5]  Warner Fite,et al.  From the Psychological Laboratory of the University of Chicago: The monaural localization of sound. , 1901 .

[6]  S. Abel,et al.  Sound localization. The interaction of aging, hearing loss and hearing protection. , 1996, Scandinavian audiology.

[7]  J. Terhune Sound Localization Abilities of Untrained Humans Using Complex and Sinusoidal Sounds , 1974 .

[8]  C. Lorenzi,et al.  Sound localization in noise in normal-hearing listeners. , 1997, The Journal of the Acoustical Society of America.

[9]  F. Wightman,et al.  The dominant role of low-frequency interaural time differences in sound localization. , 1992, The Journal of the Acoustical Society of America.

[10]  W R Thurlow,et al.  Effect of induced head movements on localization of direction of sounds. , 1967, The Journal of the Acoustical Society of America.

[11]  R. Humanski,et al.  Binaural and Monaural Localization of Sound in Two-Dimensional Space , 1990, Perception.

[12]  J M Terhune,et al.  Localization of pure tones and click trains by untrained humans. , 1985, Scandinavian audiology.

[13]  W R Thurlow,et al.  Effect of stimulus duration on localization of direction noise stimuli. , 1970, Journal of speech and hearing research.

[14]  R Plomp,et al.  Auditory handicap of hearing impairment and the limited benefit of hearing aids. , 1978, The Journal of the Acoustical Society of America.

[15]  W Noble,et al.  The contribution of head motion cues to localization of low-pass noise , 1997, Perception & psychophysics.

[16]  S M Abel,et al.  Sound localization: effects of reverberation time, speaker array, stimulus frequency, and stimulus rise/decay. , 1993, The Journal of the Acoustical Society of America.

[17]  R. Gilkey,et al.  Sound localization in noise: the effect of signal-to-noise ratio. , 1996, The Journal of the Acoustical Society of America.

[18]  G Russell Individual differences in pure-tone localization. , 1976, The Journal of the Acoustical Society of America.

[19]  D Byrne,et al.  Effects of acclimatization and deprivation on non-speech auditory abilities. , 1996, Ear and hearing.

[20]  W. Noble,et al.  Auditory localization, detection of spatial separateness, and speech hearing in noise by hearing impaired listeners. , 1997, The Journal of the Acoustical Society of America.

[21]  D. M. Green,et al.  Sound localization by human listeners. , 1991, Annual review of psychology.

[22]  Daniel E. Shub,et al.  Discrimination and identification of azimuth using spectral shape. , 2008, The Journal of the Acoustical Society of America.

[23]  J R Angell MONAURAL LOCALIZATION OF SOUND. , 1901, Science.

[24]  Sharon M. Abel,et al.  The benefit of practice for sound localization without sight , 2004 .

[25]  Ward R. Drennan,et al.  Localization and Speech-Identification Ability of Hearing-Impaired Listeners Using Phase-Preserving Amplification , 2005 .

[26]  J L Cranford,et al.  Influences of age and hearing loss on the precedence effect in sound localization. , 1993, Journal of speech and hearing research.

[27]  C. Lorenzi,et al.  Sound localization in noise in hearing-impaired listeners. , 1997, The Journal of the Acoustical Society of America.

[28]  S. Gatehouse,et al.  Localization and speech-identification ability of hearing-impaired listeners using phase-preserving amplification. , 2001, Ear and hearing.

[29]  S. Perrett,et al.  The effect of head rotations on vertical plane sound localization. , 1997, The Journal of the Acoustical Society of America.

[30]  D. Byrne,et al.  Effects of long-term bilateral and unilateral fitting of different hearing aid types on the ability to locate sounds. , 1992, Journal of the American Academy of Audiology.

[31]  Gitte Keidser,et al.  The National Acoustic Laboratories (NAL) CDs of Speech and Noise for Hearing Aid Evaluation: Normative Data and Potential Applications , 2002 .

[32]  Shelton Br,et al.  The relation between vision, head motion and accuracy of free-field auditory localization. , 1982 .

[33]  Robert A. Butler,et al.  The bandwidth effect on monaural and binaural localization , 1986, Hearing Research.

[34]  Pavel Zahorik,et al.  Perceptual recalibration in human sound localization: learning to remediate front-back reversals. , 2006, The Journal of the Acoustical Society of America.

[35]  Paul M. Hofman,et al.  Relearning sound localization with new ears , 1998, Nature Neuroscience.

[36]  L. Rayleigh,et al.  XII. On our perception of sound direction , 1907 .

[37]  Gitte Keidser,et al.  The effect of multi-channel wide dynamic range compression, noise reduction, and the directional microphone on horizontal localization performance in hearing aid wearers , 2006, International journal of audiology.

[38]  William M. Hartmann,et al.  Localization of sound in rooms. , 1982, The Journal of the Acoustical Society of America.

[39]  V R Algazi,et al.  Elevation localization and head-related transfer function analysis at low frequencies. , 2001, The Journal of the Acoustical Society of America.

[40]  F. Asano,et al.  Role of spectral cues in median plane localization. , 1990, The Journal of the Acoustical Society of America.

[41]  A D Musicant,et al.  The influence of pinnae-based spectral cues on sound localization. , 1984, The Journal of the Acoustical Society of America.

[42]  W Noble,et al.  Available response choices affect localization of sound , 1995, Perception & psychophysics.

[43]  W M Hartmann,et al.  Sound localization in the median sagittal plane by listeners with presbyacusis. , 1998, Journal of the American Academy of Audiology.

[44]  Marc Moonen,et al.  Horizontal localization with bilateral hearing aids: without is better than with. , 2006, The Journal of the Acoustical Society of America.

[45]  R. Plomp Auditory handicap of hearing impairment and the limited benefit of hearing aids , 1977 .

[46]  W. Noble,et al.  The Speech, Spatial and Qualities of Hearing Scale (SSQ) , 2004, International journal of audiology.

[47]  R. Häusler,et al.  Sound localization in subjects with impaired hearing. Spatial-discrimination and interaural-discrimination tests. , 1983, Acta oto-laryngologica. Supplementum.

[48]  A Markides Localisation of speech through similar and dissimilar binaural hearing aid listening modes. , 1978, British journal of audiology.

[49]  B R Shelton,et al.  The relation between vision, head motion and accuracy of free-field auditory localization. , 1982, The Journal of auditory research.

[50]  A. Neuman,et al.  Effects of in-the-ear microphone directionality on sound direction identification. , 2008, The Journal of the Acoustical Society of America.

[51]  Virginia Best,et al.  The role of high frequencies in speech localization. , 2005, The Journal of the Acoustical Society of America.

[52]  Gitte Keidser,et al.  Effect of low-frequency gain and venting effects on the benefit derived from directionality and noise reduction in hearing aids , 2007, International journal of audiology.

[53]  W. Noble,et al.  Effects on sound localization of configuration and type of hearing impairment. , 1994, The Journal of the Acoustical Society of America.

[54]  Harvey Dillon,et al.  NAL-NL1: A new procedure for fitting non-linear hearing aids , 1999 .