Sufficient conditions for global weak Pareto solutions in multiobjective optimization

In this paper we derive new sufficient conditions for global weak Pareto solutions to set-valued optimization problems with general geometric constraints of the type $$\begin{aligned} \text{ maximize}\quad F(x) \quad \text{ subject} \text{ to}\quad x\in \Omega , \end{aligned}$$where $$F: X\rightrightarrows Z$$ is a set-valued mapping between Banach spaces with a partial order on $$Z$$. Our main results are established by using advanced tools of variational analysis and generalized differentiation; in particular, the extremal principle and full generalized differential calculus for the subdifferential/coderivative constructions involved. Various consequences and refined versions are also considered for special classes of problems in vector optimization including those with Lipschitzian data, with convex data, with finitely many objectives, and with no constraints.

[1]  Boris S. Mordukhovich,et al.  Refined necessary conditions in multiobjective optimization with applications to microeconomic modeling , 2011 .

[2]  Boris S. Mordukhovich,et al.  Necessary Conditions in Nonsmooth Minimization via Lower and Upper Subgradients , 2004 .

[3]  B. Mordukhovich Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions , 1993 .

[4]  Joydeep Dutta,et al.  Optimality conditions for maximizing a locally Lipschitz function , 2005 .

[5]  Boris S. Mordukhovich,et al.  Set-valued optimization in welfare economics , 2010 .

[6]  J. Borwein,et al.  Techniques of variational analysis , 2005 .

[7]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[8]  Johannes Jahn,et al.  Vector optimization - theory, applications, and extensions , 2004 .

[9]  H. Riahi,et al.  Variational Methods in Partially Ordered Spaces , 2003 .

[10]  Boris S. Mordukhovich,et al.  Extended Pareto Optimality in Multiobjective Problems , 2012 .

[11]  Yu. S. Ledyaev,et al.  A Note on the Characterization of the Global Maxima of a (Tangentially) Convex Function Over a Convex Set , 1996 .

[12]  B. Mordukhovich Variational Analysis and Generalized Differentiation II: Applications , 2006 .

[13]  Truong Xuan Duc Ha The Fermat Rule and Lagrange Multiplier Rule for Various Efficient Solutions of Set-Valued Optimization Problems Expressed in Terms of Coderivatives , 2012 .

[14]  I. Ekeland,et al.  Infinite-Dimensional Optimization And Convexity , 1983 .

[15]  Marius Durea,et al.  On some Fermat rules for set-valued optimization problems , 2011 .

[16]  T. Q. Bao,et al.  Variational principles for set-valued mappings with applications to multiobjective optimization , 2007 .

[17]  Boris S. Mordukhovich,et al.  Relative Pareto minimizers for multiobjective problems: existence and optimality conditions , 2009, Math. Program..

[18]  Boris S. Mordukhovich,et al.  Necessary conditions for super minimizers in constrained multiobjective optimization , 2009, J. Glob. Optim..

[19]  C. Zălinescu,et al.  Vector variational principles for set-valued functions , 2011 .

[20]  Xi Yin Zheng,et al.  The Lagrange Multiplier Rule for Multifunctions in Banach Spaces , 2006, SIAM J. Optim..

[21]  D. Luc,et al.  Nonsmooth vector functions and continuous optimization , 2008 .

[22]  Shashi Kant Mishra,et al.  Invexity and Optimization , 2008 .