Structural Highness Notions
暂无分享,去创建一个
[1] Julia A. Knight,et al. Computable structures and the hyperarithmetical hierarchy , 2000 .
[2] Richard A. Shore,et al. 1 1 relations and paths through O , 2004 .
[3] Danna Zhou,et al. d. , 1840, Microbial pathogenesis.
[4] Robert I. Soare,et al. The Friedberg-Muchnik Theorem Re-Examined , 1972, Canadian Journal of Mathematics.
[5] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[6] Barbara Csima. Degrees of Categoricity and Related Notions , 2013 .
[7] Johanna N. Y. Franklin,et al. Taking the path computably traveled , 2019, J. Log. Comput..
[8] Theodore A. Slaman,et al. When oracles do not help , 1991, COLT '91.
[9] Haim Judah,et al. Set Theory: On the Structure of the Real Line , 1995 .
[10] Johanna N. Y. Franklin,et al. Lowness for isomorphism, countable ideals, and computable traceability , 2019, Math. Log. Q..
[11] Johanna N. Y. Franklin,et al. Degrees of and lowness for isometric isomorphism , 2019, J. Log. Anal..
[12] Julia F. Knight,et al. Isomorphism relations on computable structures , 2012, J. Symb. Log..
[13] Johanna N. Y. Franklin,et al. Degrees that Are Low for Isomorphism , 2014, Comput..
[14] G. Sacks. Higher recursion theory , 1990 .
[15] Johanna N. Y. Franklin,et al. Relativizations of randomness and genericity notions , 2011 .
[16] Johanna N. Y. Franklin,et al. Lowness for isomorphism and degrees of genericity , 2018, Comput..
[17] Johanna N. Y. Franklin. LOWNESS AND HIGHNESS PROPERTIES FOR RANDOMNESS NOTIONS , 2009 .
[18] Stuart A. Kurtz,et al. Notions of Weak Genericity , 1983, J. Symb. Log..
[19] Stephen G. Simpson,et al. A degree-theoretic definition of the ramified analytical hierarchy , 1976 .
[20] Julia F. Knight,et al. Computable trees of Scott rank ω1CK, and computable approximation , 2006, Journal of Symbolic Logic.
[21] Michael Nedzelsky,et al. Recursion Theory I , 2008, Arch. Formal Proofs.