Improving the B3LYP bond energies by using the X1 method.

Recently, we proposed the X1 method which combines density functional theory method (B3LYP) with a neural network correction for an accurate yet efficient prediction of heats of formation [J. M. Wu and X. Xu, J. Chem. Phys. 127, 214105 (2007)]. In the present work, we examine the X1 performance to calculate bond energies. We use 32 radicals and 115 molecules to set up 142 bond dissociation reactions. For the total of 147 heats of formations and 142 bond energies, B3LYP leads to mean absolute deviations of 4.54 and 6.26 kcal/mol, respectively, while X1 reduces the corresponding errors to 1.41 and 2.45 kcal/mol.

[1]  M. Szwarc Experimental methods for measurement of bond dissociation energies and heats of formation of radicals , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  Chiung-Chu Chen,et al.  Structures, intramolecular rotation barriers, and thermochemical properties of methyl ethyl, methyl isopropyl, and methyl tert-butyl ethers and the corresponding radicals , 2003 .

[3]  Mihaly Kallay,et al.  W3 theory: robust computational thermochemistry in the kJ/mol accuracy range. , 2003, Journal of Chemical Physics.

[4]  Pedro Alexandrino Fernandes,et al.  General performance of density functionals. , 2007, The journal of physical chemistry. A.

[5]  B. Ruscic,et al.  W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. , 2006, The Journal of chemical physics.

[6]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[7]  Michel Waroquier,et al.  Hydrocarbon bond dissociation enthalpies: from substituted aromatics to large polyaromatics. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[8]  John A. Montgomery,et al.  Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry , 1998 .

[9]  Yixiang Cao,et al.  A localized orbital analysis of the thermochemical errors in hybrid density functional theory: achieving chemical accuracy via a simple empirical correction scheme. , 2006, The Journal of chemical physics.

[10]  J. Cioslowski,et al.  A set of standard enthalpies of formation for benchmarking, calibration, and parametrization of electronic structure methods , 2000 .

[11]  L. Curtiss,et al.  Assessment of Gaussian-3 and density functional theories for a larger experimental test set , 2000 .

[12]  L. Curtiss,et al.  Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation , 1997 .

[13]  S. Grimme Seemingly simple stereoelectronic effects in alkane isomers and the implications for Kohn-Sham density functional theory. , 2006, Angewandte Chemie.

[14]  Julian Tirado-Rives,et al.  Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. , 2008, Journal of chemical theory and computation.

[15]  John A. Montgomery,et al.  A complete basis set model chemistry. VII. Use of the minimum population localization method , 2000 .

[16]  S. Blanksby,et al.  Bond dissociation energies of organic molecules. , 2003, Accounts of chemical research.

[17]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[18]  T. Gilbert,et al.  Progressive systematic underestimation of reaction energies by the B3LYP model as the number of C-C bonds increases: why organic chemists should use multiple DFT models for calculations involving polycarbon hydrocarbons. , 2005, The Journal of organic chemistry.

[19]  Jorma A. Seetula,et al.  Kinetics and thermochemistry of the R+HBr⇄RH+Br (R=C2H5 or β-C2H4Cl) equilibrium An abinitio study of the bond energies in partly chlorinated ethanes and propanes , 1998 .

[20]  Timothy Clark,et al.  Enthalpies of formation from B3LYP calculations , 2004, J. Comput. Chem..

[21]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[22]  Lihong Hu,et al.  Combined first-principles calculation and neural-network correction approach for heat of formation , 2003 .

[23]  Jan M. L. Martin,et al.  TOWARDS STANDARD METHODS FOR BENCHMARK QUALITY AB INITIO THERMOCHEMISTRY :W1 AND W2 THEORY , 1999, physics/9904038.

[24]  Hao Huang,et al.  Assessment of Experimental Bond Dissociation Energies Using Composite ab Initio Methods and Evaluation of the Performances of Density Functional Methods in the Calculation of Bond Dissociation Energies , 2003, J. Chem. Inf. Comput. Sci..

[25]  B. Delley Ground-state enthalpies: evaluation of electronic structure approaches with emphasis on the density functional method. , 2006, The journal of physical chemistry. A.

[26]  Branko Ruscic,et al.  Evidence for a Lower Enthalpy of Formation of Hydroxyl Radical and a Lower Gas-Phase Bond Dissociation Energy of Water , 2001 .

[27]  Leo Radom,et al.  Trends in R-X bond dissociation energies (R = Me, Et, i-Pr, t-Bu; X = H, CH3, OCH3, OH, F): a surprising shortcoming of density functional theory. , 2005, The journal of physical chemistry. A.

[28]  D. Golden,et al.  Use of quantum methods for a consistent approach to combustion modelling: hydrocarbon bond dissociation energies. , 2001, Faraday discussions.

[29]  Michelle L. Coote,et al.  Reliable Theoretical Procedures for the Calculation of Electronic-Structure Information in Hydrogen Abstraction Reactions , 2004 .

[30]  GuanHua Chen,et al.  Neural network correction for heats of formation with a larger experimental training set and new descriptors , 2005 .

[31]  L. Curtiss,et al.  Gaussian-3 (G3) theory for molecules containing first and second-row atoms , 1998 .

[32]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[33]  Min Zhang,et al.  Improving the accuracy of density-functional theory calculation: the genetic algorithm and neural network approach. , 2007, The Journal of chemical physics.

[34]  L. Curtiss,et al.  Gaussian‐1 theory: A general procedure for prediction of molecular energies , 1989 .

[35]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[36]  Clémence Corminboeuf,et al.  Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals. , 2006, Organic letters.

[37]  David J. Henry,et al.  Bond Dissociation Energies and Radical Stabilization Energies Associated with Substituted Methyl Radicals , 2001 .

[38]  James B. Anderson,et al.  Bond-based corrections to semi-empirical and ab initio electronic structure calculations , 2005 .

[39]  Karl K. Irikura New Empirical Procedures for Improving ab Initio Energetics , 2002 .

[40]  L. Curtiss,et al.  Gaussian-4 theory. , 2007, The Journal of chemical physics.

[41]  Xin Xu,et al.  The X1 method for accurate and efficient prediction of heats of formation. , 2007, The Journal of chemical physics.

[42]  J. M. Simoes,et al.  Transition metal-hydrogen and metal-carbon bond strengths: the keys to catalysis , 1990 .

[43]  Hongwei Xiang,et al.  Accurate Calculations of Bond Dissociation Enthalpies with Density Functional Methods , 2003 .

[44]  David M. Golden,et al.  Hydrocarbon Bond Dissociation Energies , 1982 .

[45]  Tore Brinck,et al.  Quantum Chemical Studies on the Thermochemistry of Alkyl and Peroxyl Radicals , 1999 .

[46]  Russell D. Johnson,et al.  NIST Computational Chemistry Comparison and Benchmark Database , 2005 .

[47]  G. Ellison,et al.  Three methods to measure RH bond energies , 1994 .

[48]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[49]  Gino A. DiLabio,et al.  Density Functional Theory Based Model Calculations for Accurate Bond Dissociation Enthalpies. 3. A Single Approach for X−H, X−X, and X−Y (X, Y = C, N, O, S, Halogen) Bonds , 2003 .

[50]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[51]  Shuhua Li,et al.  Block correlated coupled cluster theory with a complete active-space self-consistent-field reference function: the formulation and test applications for single bond breaking. , 2007, The Journal of chemical physics.