Stochastic Methods for Global Optimization and Problem Solving

Stochastic algorithms provide an effective framework to solve complex optimization problems, when derivative information is not available. Simulated Annealing and Genetic Algorithms are stochastic optimization methods that can identify putative optimal solutions without using derivative information. This article presents the mathematical foundations and the algorithmic framework of these two methods.

[1]  Charles Audet,et al.  Globalization strategies for Mesh Adaptive Direct Search , 2008, Comput. Optim. Appl..

[2]  Panos M. Pardalos,et al.  Improving the Neighborhood Selection Strategy in Simulated Annealing using the Optimal Stopping Problem , 2008 .

[3]  Gary J. Koehler,et al.  New stopping criterion for genetic algorithms , 2000, Eur. J. Oper. Res..

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[6]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[7]  L. Ingber Very fast simulated re-annealing , 1989 .

[8]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[9]  W. Wenzel,et al.  Scaling behavior of stochastic minimization algorithms in a perfect funnel landscape , 1999 .

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  A. Neumaier Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[14]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[15]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[16]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[17]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[18]  Panos M. Pardalos,et al.  Simulated Annealing and Genetic Algorithms for the Facility Layout Problem: A Survey , 1997, Comput. Optim. Appl..

[19]  Jessica Andrea Carballido,et al.  On Stopping Criteria for Genetic Algorithms , 2004, SBIA.