Improved mean shift algorithm for multiple occlusion target tracking

Multiple occlusion target tracking is usually a difficult problem in video surveillance. But in many cases, traditional mean shift tracking algorithms fail to track occlusion targets robustly. In this work, we focus on improving mean shift tracking algorithms to model and track all kinds of occlusion targets in video surveillance scenes. Two primary improvements on traditional mean shift tracking algorithms are proposed. First, after we determine which target the overlapping patches belong to, the nonocclusion part of each occlusion target can be obtained and applied to the tracking algorithm. Second, all the related occlusion target states are iteratively estimated one after another to eliminate the occlusion effects during the tracking process. Furthermore, the contrast experiment results show that the improved algorithm can track multiple occlusion targets, whereas traditional mean shift tracking algorithms fail.

[1]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[3]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Larry S. Davis,et al.  Probabilistic framework for segmenting people under occlusion , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[5]  Gregory D. Hager,et al.  Probabilistic Data Association Methods for Tracking Complex Visual Objects , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Donald Reid An algorithm for tracking multiple targets , 1978 .

[7]  Gregory Hager,et al.  Multiple kernel tracking with SSD , 2004, CVPR 2004.

[8]  Ming Yang,et al.  Multiple Collaborative Kernel Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Brendan J. Frey,et al.  Learning flexible sprites in video layers , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  J. K. Aggarwal,et al.  3D structure reconstruction from an ego motion sequence using statistical estimation and detection theory , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[11]  Mei Han,et al.  An algorithm for multiple object trajectory tracking , 2004, CVPR 2004.

[12]  Ramakant Nevatia,et al.  Tracking multiple humans in crowded environment , 2004, CVPR 2004.

[13]  Ramakant Nevatia,et al.  Tracking multiple humans in complex situations , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  A. G. Amitha Perera,et al.  Multi-Object Tracking Through Simultaneous Long Occlusions and Split-Merge Conditions , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[16]  Gang Hua,et al.  Tracking appearances with occlusions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[17]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Ramakant Nevatia,et al.  Bayesian human segmentation in crowded situations , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[19]  A. G. Amitha Perera,et al.  A unified framework for tracking through occlusions and across sensor gaps , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[20]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[21]  Ramakant Nevatia,et al.  Segmentation and tracking of multiple humans in complex situations , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[22]  Hai Tao,et al.  A background layer model for object tracking through occlusion , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.