Deep Convolutional Gaussian Mixture Model for Stain-Color Normalization of Histopathological Images

Automated microscopic analysis of stained histopathological images is degraded by the amount of color and intensity variations in data. This paper presents a novel unsupervised probabilistic approach by integrating a convolutional neural network (CNN) and the Gaussian mixture model (GMM) in a unified framework, which jointly optimizes the modeling and normalizing the color and intensity of hematoxylin- and eosin-stained (H&E) histological images. In contrast to conventional GMM-based methods that are applied only on the color distribution of data for stain color normalization, our proposal learns how to cluster the tissue structures according to their shape and appearance and simultaneously fits a multivariate GMM to the data. This approach is more robust than standard GMM in the presence of strong staining variations because fitting the GMM is conditioned on the appearance of tissue structures in the density channel of an image. Performing a gradient descent optimization in an end-to-end learning, the network learns to maximize the log-likelihood of data given estimated parameters of multivariate Gaussian distributions. Our method does not need ground truth, shape and color assumptions of image contents or manual tuning of parameters and thresholds which makes it applicable to a wide range of histopathological images. Experiments show that our proposed method outperforms the state-of-the-art algorithms in terms of achieving a higher color constancy.

[1]  Bo Zong,et al.  Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection , 2018, ICLR.

[2]  Nasir M. Rajpoot,et al.  A Nonlinear Mapping Approach to Stain Normalization in Digital Histopathology Images Using Image-Specific Color Deconvolution , 2014, IEEE Transactions on Biomedical Engineering.

[3]  Benjamin Schrauwen,et al.  Factoring Variations in Natural Images with Deep Gaussian Mixture Models , 2014, NIPS.

[4]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[5]  Anant Madabhushi,et al.  EM-based segmentation-driven color standardization of digitized histopathology , 2013, Medical Imaging.

[6]  Erik Reinhard,et al.  Color Transfer between Images , 2001, IEEE Computer Graphics and Applications.

[7]  J. S. Marron,et al.  A method for normalizing histology slides for quantitative analysis , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[8]  J. A. van der Laak,et al.  Hue-saturation-density (HSD) model for stain recognition in digital images from transmitted light microscopy. , 2000, Cytometry.

[9]  J. S. Marron,et al.  Appearance Normalization of Histology Slides , 2010, MLMI.

[10]  Bram van Ginneken,et al.  The importance of stain normalization in colorectal tissue classification with convolutional networks , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[11]  A. Ruifrok,et al.  Quantification of histochemical staining by color deconvolution. , 2001, Analytical and quantitative cytology and histology.

[12]  Nassir Navab,et al.  Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images , 2016, IEEE Transactions on Medical Imaging.

[13]  Nico Karssemeijer,et al.  Stain Specific Standardization of Whole-Slide Histopathological Images , 2016, IEEE Transactions on Medical Imaging.