Partial Online List Coloring of Graphs

For a graph G, let λt(G) be the maximum number of vertices of G that can be colored whenever each vertex of G is given t permissible colors. Albertson, Grossman, and Haas conjectured that if G is s‐choosable and t≤s , then λt≥ts|V(G)| . In this article, we consider the online version of this conjecture. Let λt OL (G) be the maximum number of vertices of G that can be colored online whenever each vertex of G is given t permissible colors online. An analog of the above conjecture is the following: if G is online s‐choosable and t≤s, then λt OL (G)≥ts|V(G)| . This article generalizes some results concerning partial list coloring to online partial list coloring. We prove that for any positive integers p,q , λp OL (G)+λq OL (G)≥λp+q OL (G) . As a consequence, if s is a multiple of t, then λt OL (G)≥ts|V(G)| . We also prove that if G is online s‐choosable and t≤s−χ(G)+1 , then λt OL (G)≥ts|V(G)| and for any t≤s , λt OL (G)≥67ts|V(G)| .

[1]  Xuding Zhu,et al.  Application of polynomial method to on-line list colouring of graphs , 2012, Eur. J. Comb..

[2]  Seog-Jin Kim,et al.  On-Line List Colouring of Complete Multipartite Graphs , 2012, Electron. J. Comb..

[3]  Uwe Schauz,et al.  A Paintability Version of the Combinatorial Nullstellensatz, and List Colorings of k-partite k-uniform Hypergraphs , 2010, Electron. J. Comb..

[4]  Jan Hladký,et al.  Brooks' Theorem via the Alon-Tarsi Theorem , 2010, Discret. Math..

[5]  Uwe Schauz,et al.  Flexible Color Lists in Alon and Tarsi's Theorem, and Time Scheduling with Unreliable Participants , 2010, Electron. J. Comb..

[6]  Xuding Zhu,et al.  On-Line List Colouring of Graphs , 2009, Electron. J. Comb..

[7]  Uwe Schauz,et al.  Mr. Paint and Mrs. Correct , 2009, Electron. J. Comb..

[8]  Moharram N. Iradmusa A note on partial list coloring , 2008, Australas. J Comb..

[9]  Margit Voigt,et al.  Algorithmic Aspects of Partial List Colourings , 2000, Combinatorics, Probability and Computing.

[10]  Michael O. Albertson,et al.  Partial list colorings , 2000, Discret. Math..

[11]  G. Chappell A lower bound for partial list colorings , 1998, J. Graph Theory.

[12]  Noga Alon,et al.  Choice Numbers of Graphs: a Probabilistic Approach , 1992, Combinatorics, Probability and Computing.

[13]  Zsolt Tuza,et al.  Graph colorings with local constraints - a survey , 1997, Discuss. Math. Graph Theory.