A priori and a posteriori error analysis for the Nitsche's method of a reduced Landau-de Gennes problem

The equilibrium configurations of a two dimensional planar bistable nematic liquid crystal device are modelled by a system of second order semi-linear elliptic partial differential equations with non-homogeneous boundary conditions. In this article, Nitsche's method is applied to approximate the solution of this non-linear model. A discrete inf-sup condition sufficient for the stability of a well-posed linear problem is established and this with a fixed point theorem allows the proof of local existence and uniqueness of a discrete solution to the semi-linear problems. {\it A priori} and {\it a posteriori} energy norm analysis is established for a sufficiently large penalization parameter and sufficiently fine triangulation. Optimal order {\it a priori} error estimates in $L^2$ norm is also established. Several numerical examples that confirm the theoretical results are presented.

[1]  Kwang Y. Kim A posteriori error analysis for locally conservative mixed methods , 2007, Math. Comput..

[2]  Apala Majumdar,et al.  Landau–De Gennes Theory of Nematic Liquid Crystals: the Oseen–Frank Limit and Beyond , 2008, 0812.3131.

[3]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[4]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[5]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[6]  Carsten Carstensen,et al.  A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.

[7]  Carsten Carstensen,et al.  Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity , 2017, IMA Journal of Numerical Analysis.

[8]  H. Keller,et al.  Approximation methods for nonlinear problems with application to two-point boundary value problems , 1975 .

[9]  Jinchao Xu,et al.  Regularity estimates for elliptic boundary value problems in Besov spaces , 2003, Math. Comput..

[10]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[11]  J. Tinsley Oden,et al.  A priori error estimate for the Baumann–Oden version of the discontinuous Galerkin method , 2001 .

[12]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[13]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[14]  Apala Majumdar,et al.  Multistability in planar liquid crystal wells. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Apala Majumdar,et al.  Order Reconstruction for Nematics on Squares with Isotropic Inclusions: A Landau-De Gennes Study , 2018, SIAM J. Appl. Math..

[16]  Frédéric Hélein,et al.  Asymptotics for the minimization of a Ginzburg-Landau functional , 1993 .

[17]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.

[18]  Dmitry Golovaty,et al.  Dimension Reduction for the Landau-de Gennes Model in Planar Nematic Thin Films , 2015, Journal of Nonlinear Science.

[19]  Tirthankar Bhattacharyya,et al.  Topics in Functional Analysis and Applications , 2015 .

[20]  A. Pisante,et al.  Uniaxial versus Biaxial Character of Nematic Equilibria in Three Dimensions , 2013, 1312.3358.

[21]  J. M. Robbins,et al.  Half-Integer Point Defects in the Q-Tensor Theory of Nematic Liquid Crystals , 2016, J. Nonlinear Sci..

[22]  Dietrich Braess,et al.  A Posteriori Error Estimators for the Raviart--Thomas Element , 1996 .

[23]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[24]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[25]  Kwang Y. Kim A posteriori error estimators for locally conservative methods of nonlinear elliptic problems , 2007 .

[26]  Endre Süli,et al.  Poincaré-type inequalities for broken Sobolev spaces , 2003 .

[27]  F. Lin,et al.  Static and dynamic theories of liquid crystals , 2001 .

[28]  J. Ericksen Liquid crystals with variable degree of orientation , 1991 .

[29]  C Tsakonas,et al.  Multistable alignment states in nematic liquid crystal filled wells , 2007 .

[30]  Timothy A. Davis,et al.  Finite Element Analysis of the Landau--de Gennes Minimization Problem for Liquid Crystals , 1998 .

[31]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[32]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[33]  Apala Majumdar,et al.  Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory , 2010 .

[34]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[35]  Thirupathi Gudi,et al.  A new error analysis for discontinuous finite element methods for linear elliptic problems , 2010, Math. Comput..

[36]  Apala Majumdar,et al.  Discontinuous Galerkin Finite Element Methods for the Landau-de Gennes Minimization Problem of Liquid Crystals , 2019, IMA Journal of Numerical Analysis.

[37]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[38]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[39]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[40]  Rolf Stenberg,et al.  An improved a priori error analysis of Nitsche’s method for Robin boundary conditions , 2018, Numerische Mathematik.

[41]  Stanimire Tomov,et al.  Explicit and Averaging A Posteriori Error Estimates for Adaptive Finite Volume Methods , 2004, SIAM J. Numer. Anal..