Application of Faber polynomials to the approximate solution of a generalized boundary value problem of linear conjugation in the theory of analytic functions

Abstract In the present paper the method of successive approximations and Faber polynomials are used to derive the approximate solution of a generalized boundary value problem of linear conjugation on the Lyapunov curve. The conditions for the existence and uniqueness of the solution are presented in the L 2 and H ( α ) spaces.

[1]  Witold Pogorzelski,et al.  Integral equations and their applications , 1966 .

[2]  S. W. Ellacott,et al.  Computation of Faber series with application to numerical polynomial approximation in the complex plane , 1983 .

[3]  A. Constantin On a boundary value problem , 1996, ANNALI DELL UNIVERSITA DI FERRARA.

[4]  I. Vekua Generalized Analytic Functions , 1962 .

[5]  Approximation by faber polynomials for a class of Jordan domains , 1974 .

[6]  D. Hilbert Grundzuge Einer Allgemeinen Theorie Der Linearen Integralgleichungen , 2009 .

[7]  D. Israfilov Approximation by p -Faber polynomials in the weighted Smirnov class Ep( G,ω ) and the Bieberbach polynomials , 2001 .

[8]  B. Bojarski,et al.  $$ \mathbb{R} $$-Linear problem for multiply connected domains and alternating method of Schwarz , 2013 .

[9]  J. H. Curtiss Solutions of the Dirichlet Problem in the Plane by Approximation with Faber Polynomials , 1966 .

[10]  P. K. Suetin Series of Faber polynomials , 1998 .

[11]  Iurie Nicolae Caraus,et al.  The Numerical Solution for System of Singular Integro-Differential Equations by Faber-Laurent Polynomials , 2004, NAA.

[12]  Approximation of functions by partial sums of series of faber polynomials on continua with nonzero local geometric characteristic , 1980 .

[13]  Ch. Pommerenke,et al.  On faber polynomials and faber expansions , 1967 .

[14]  V. Mityushev ℝ-linear and Riemann–Hilbert Problems for Multiply Connected Domains , 2012 .

[15]  Zhilin Li,et al.  Approximate solution of singular integro-differential equations by reduction over Faber-Laurent polynomials , 2004 .

[16]  P. Wójcik,et al.  Application of Faber polynomials to the approximate solution of singular integral equations with the Cauchy kernel , 2013 .

[17]  Sorin G. Gal Approximation in compact sets by q-Stancu-Faber polynomials, q>1 , 2011, Comput. Math. Appl..

[18]  S. Rogosin,et al.  Constructive methods for linear and nonlinear boundary value problems for analytic functions : theory and applications , 2000 .

[19]  G. Tsamasphyros,et al.  Approximations of singular integral equations on Lyapunov contours in Banach spaces , 2005 .

[20]  J. Radok,et al.  Singular Integral Equations: Boundary problems of functions theory and their applications to mathematical physics , 1977 .

[21]  S. Ellacott A survey of Faber methods in numerical approximation , 1986 .