Stress-Activated NRF 2-MD M 2 Cascade Controls Neoplastic Progression in Pancreas Graphical

[1]  M. Karin,et al.  p62 in Cancer: Signaling Adaptor Beyond Autophagy , 2016, Cell.

[2]  S. Subramaniam,et al.  p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. , 2016, Cancer cell.

[3]  K. Prasadan,et al.  PNA lectin for purifying mouse acinar cells from the inflamed pancreas , 2016, Scientific Reports.

[4]  G. Lozano,et al.  MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53. , 2016, Molecular cell.

[5]  Mason R. Mackey,et al.  Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress , 2015, Proceedings of the National Academy of Sciences.

[6]  Joerg Kallen,et al.  Discovery of a Dihydroisoquinolinone Derivative (NVP-CGM097): A Highly Potent and Selective MDM2 Inhibitor Undergoing Phase 1 Clinical Trials in p53wt Tumors. , 2015, Journal of medicinal chemistry.

[7]  Jessica Zucman-Rossi,et al.  Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets , 2015, Nature Genetics.

[8]  J. Kench,et al.  Whole genomes redefine the mutational landscape of pancreatic cancer , 2015, Nature.

[9]  M. Keefe,et al.  Regeneration and repair of the exocrine pancreas. , 2015, Annual review of physiology.

[10]  M. Pasca di Magliano,et al.  Epithelial Notch signaling is a limiting step for pancreatic carcinogenesis , 2014, BMC Cancer.

[11]  D. Mukhopadhyay,et al.  Identification of a new class of MDM2 inhibitor that inhibits growth of orthotopic pancreatic tumors in mice. , 2014, Gastroenterology.

[12]  R. Fåhraeus,et al.  MDM2’s social network , 2014, Oncogene.

[13]  H. Frucht,et al.  Pancreatic ductal adenocarcinoma: risk factors, screening, and early detection. , 2014, World journal of gastroenterology.

[14]  P. Maisonneuve,et al.  Epidemiology of chronic pancreatitis: burden of the disease and consequences , 2014, United European gastroenterology journal.

[15]  H. Aburatani,et al.  Exploration of liver cancer genomes , 2014, Nature Reviews Gastroenterology &Hepatology.

[16]  Liang Song,et al.  Interleukin-6 in inflammatory and malignant diseases of the pancreas. , 2014, Seminars in immunology.

[17]  M. Pasca di Magliano,et al.  Kras as a key oncogene and therapeutic target in pancreatic cancer , 2014, Front. Physiol..

[18]  Amy Y. M. Au,et al.  p53 status determines the role of autophagy in pancreatic tumour development , 2013, Nature.

[19]  J. Pedraza-Chaverri,et al.  Modulation of mitochondrial functions by the indirect antioxidant sulforaphane: a seemingly contradictory dual role and an integrative hypothesis. , 2013, Free radical biology & medicine.

[20]  B. Zetter,et al.  Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance. , 2013, Cancer research.

[21]  A. Maitra,et al.  Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. , 2013, Cancer letters.

[22]  A. Rustgi,et al.  Isolation, culture and genetic manipulation of mouse pancreatic ductal cells , 2013, Nature Protocols.

[23]  L. Di Marcotullio,et al.  Gli2 Acetylation at Lysine 757 Regulates Hedgehog-Dependent Transcriptional Output by Preventing Its Promoter Occupancy , 2013, PloS one.

[24]  T. Deerinck,et al.  Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice. , 2013, The Journal of clinical investigation.

[25]  M. Karin,et al.  Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. , 2013, Gastroenterology.

[26]  T. Hupp,et al.  Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway. , 2013, The Biochemical journal.

[27]  J. Ferlay,et al.  Global estimates of cancer prevalence for 27 sites in the adult population in 2008 , 2013, International journal of cancer.

[28]  A. Walch,et al.  p62 links β-adrenergic input to mitochondrial function and thermogenesis. , 2013, The Journal of clinical investigation.

[29]  K. Jensen,et al.  Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. , 2012, Cancer cell.

[30]  G. Gores,et al.  Cholangiocarcinomas can originate from hepatocytes in mice. , 2012, The Journal of clinical investigation.

[31]  T. Ishiwata,et al.  Nestin and other putative cancer stem cell markers in pancreatic cancer , 2012, Medical Molecular Morphology.

[32]  S. F. Konieczny,et al.  Maintenance of Acinar Cell Organization is Critical to Preventing Kras-Induced Acinar-Ductal Metaplasia , 2012, Oncogene.

[33]  M. Wallace,et al.  MDM2 Protein-mediated Ubiquitination of NUMB Protein , 2012, The Journal of Biological Chemistry.

[34]  D. Levy,et al.  STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. , 2011, Cancer research.

[35]  Scott E. Kern,et al.  Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis , 2011, Nature.

[36]  M. Barbacid,et al.  Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. , 2011, Cancer cell.

[37]  Fiona Campbell,et al.  Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy , 2011, Molecular Cancer.

[38]  G. Wahl,et al.  p53, Stem Cells, and Reprogramming: Tumor Suppression beyond Guarding the Genome. , 2011, Genes & cancer.

[39]  A. Mancuso,et al.  p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase , 2011, Nature Cell Biology.

[40]  J. Shea,et al.  Phenotype and Genotype of Pancreatic Cancer Cell Lines , 2010, Pancreas.

[41]  M. Komatsu,et al.  Physiological significance of selective degradation of p62 by autophagy , 2010, FEBS letters.

[42]  Mihee M. Kim,et al.  The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 , 2010, Nature Cell Biology.

[43]  G. Wahl,et al.  Linking the p53 tumor suppressor pathway to somatic cell reprogramming , 2009, Nature.

[44]  M. Diaz-Meco,et al.  p62 at the Crossroads of Autophagy, Apoptosis, and Cancer , 2009, Cell.

[45]  M. Korc,et al.  Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras. , 2009, Biochemical and biophysical research communications.

[46]  L. C. Murtaugh,et al.  Notch signaling: where pancreatic cancer and differentiation meet? , 2009, Gastroenterology.

[47]  J. L. Goodman,et al.  Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia , 2008, Proceedings of the National Academy of Sciences.

[48]  G. Parmigiani,et al.  Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses , 2008, Science.

[49]  S. Fischer,et al.  IKKalpha is required to maintain skin homeostasis and prevent skin cancer. , 2008, Cancer cell.

[50]  S. Jones,et al.  Many roads lead to oncogene-induced senescence , 2008, Oncogene.

[51]  M. Barbacid,et al.  Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. , 2007, Cancer cell.

[52]  H. Friess,et al.  Preinvasive duct-derived neoplasms in pancreas of keratin 5-promoter cyclooxygenase-2 transgenic mice. , 2006, Gastroenterology.

[53]  K. Zatloukal,et al.  Are the Mallory bodies and intracellular hyaline bodies in neoplastic and non‐neoplastic hepatocytes related? , 2006, The Journal of pathology.

[54]  Zhiwei Wang,et al.  Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells , 2006, Molecular Cancer Therapeutics.

[55]  Takahiro Shibata,et al.  Oxidative and Electrophilic Stresses Activate Nrf2 through Inhibition of Ubiquitination Activity of Keap1 , 2006, Molecular and Cellular Biology.

[56]  Masaaki Komatsu,et al.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice , 2005, The Journal of cell biology.

[57]  H. Hirata,et al.  Hes1 Directly Controls Cell Proliferation through the Transcriptional Repression of p27Kip1 , 2005, Molecular and Cellular Biology.

[58]  E. Cameron,et al.  Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. , 2005, Gastroenterology.

[59]  D. Guertin,et al.  Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex , 2005, Science.

[60]  Yue Xiong,et al.  BTB Protein Keap1 Targets Antioxidant Transcription Factor Nrf2 for Ubiquitination by the Cullin 3-Roc1 Ligase , 2005, Molecular and Cellular Biology.

[61]  Daniel J. Freeman,et al.  PTEN Regulates Mdm2 Expression through the P1 Promoter* , 2004, Journal of Biological Chemistry.

[62]  J. D. Engel,et al.  Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[63]  L. Vassilev,et al.  In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2 , 2004, Science.

[64]  E. Petricoin,et al.  Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. , 2003, Cancer cell.

[65]  D. Melton,et al.  Notch signaling controls multiple steps of pancreatic differentiation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[66]  R. Honda,et al.  Mammalian Numb is a target protein of Mdm2, ubiquitin ligase. , 2003, Biochemical and biophysical research communications.

[67]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[68]  Y. Kan,et al.  NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[69]  N. Lemoine,et al.  Rapid acinar to ductal transdifferentiation in cultured human exocrine pancreas , 1992, The Journal of pathology.

[70]  Y. Soini,et al.  Nuclear Nrf2 expression is related to a poor survival in pancreatic adenocarcinoma. , 2014, Pathology, research and practice.

[71]  G. Su,et al.  Development of orthotopic pancreatic tumor mouse models. , 2013, Methods in molecular biology.

[72]  N. Katunuma,et al.  Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. , 2009, The Journal of clinical investigation.

[73]  Michael Goggins,et al.  Update on pancreatic intraepithelial neoplasia. , 2008, International journal of clinical and experimental pathology.