Optimum semiconductors for high-power electronics

Elemental and compound semiconductors, including wide-bandgap semiconductors, are critically examined for high-power electronic applications in terms of several parameters. On the basis of an analysis applicable to a wide range of semiconducting materials and by using the available measured physical parameters, it is shown that wide-bandgap semiconductors such as SiC and diamond could offer significant advantages compared to either silicon or group III-V compound semiconductors for these applications. The analysis uses peak electric field strength at avalanche breakdown as a critical material parameter for evaluating the quality of a semiconducting material for high-power electronics. Theoretical calculations show improvement by orders of magnitude in the on-resistance, twentyfold improvement in the maximum frequency of operation, and potential for successful operation at temperatures beyond 600 degrees C for diamond high-power devices. New figures of merit for power-handling capability that emphasize electrical and thermal conductivities of the material are derived and are applied to various semiconducting materials. It is shown that an improvement in power-handling capabilities of semiconductor devices by three orders of magnitude is feasible by replacing silicon with silicon carbide; improvement in power-handling capability by six orders of magnitude is projected for diamond-based devices. >

[1]  P. Campbell,et al.  Gallium arsenide Schottky power rectifiers , 1985, IEEE Transactions on Electron Devices.

[2]  D. Ferry High-field transport in wide-band-gap semiconductors , 1975 .

[3]  Raymond F. Jurgens,et al.  High-Temperature Electronics Applications in Space Exploration , 1982, IEEE Transactions on Industrial Electronics.

[4]  R. W. Keyes,et al.  Figure of merit for semiconductors for high-speed switches , 1972 .

[5]  S. H. Hagen Surface‐Barrier Diodes on Silicon Carbide , 1968 .

[6]  Krishna Shenai,et al.  Current transport mechanisms in atomically abrupt metal-semiconductor interfaces , 1988 .

[7]  B.J. Baliga,et al.  Revolutionary innovations in power discrete devices , 1986, 1986 International Electron Devices Meeting.

[8]  E. Johnson Physical limitations on frequency and power parameters of transistors , 1965 .

[9]  Tadao Inuzuka,et al.  Growth of diamond thin films by electron assisted chemical vapor deposition , 1985 .

[10]  Herbert A. Will,et al.  Production of large‐area single‐crystal wafers of cubic SiC for semiconductor devices , 1983 .

[11]  W.V. Muench,et al.  Silicon carbide field-effect and bipolar transistors , 1977, 1977 International Electron Devices Meeting.

[12]  V.A.K. Temple MOS Controlled thyristors (MCT's) , 1984, 1984 International Electron Devices Meeting.

[13]  C. V. Opdorp,et al.  Avalanche Breakdown in Epitaxial SiC p‐n Junctions , 1969 .

[14]  Hung-Chih Chang,et al.  Chapter 9 Silicon Carbide Junction Devices , 1971 .

[15]  M.S. Adler,et al.  The insulated gate rectifier (IGR): A new power switching device , 1982, 1982 International Electron Devices Meeting.

[16]  B. Manz High-power question - will diamonds be the next GaAs , 1988 .

[17]  M.S. Adler,et al.  The evolution of power device technology , 1984, IEEE Transactions on Electron Devices.

[18]  Bantval J. Baliga,et al.  The MOS depletion-mode thyristor: a new MOS-controlled bipolar power device , 1988 .

[19]  G. Glover,et al.  The C-V characteristics of Schottky barriers on laboratory grown semiconducting diamonds , 1973 .

[20]  D. L. Barrett,et al.  Electron mobility measurements in SiC polytypes. , 1967 .

[21]  Carver A. Mead,et al.  Metal-semiconductor surface barriers , 1966 .

[22]  D. K. Ferry,et al.  Hot electron microwave conductivity of wide bandgap semiconductors , 1976 .

[23]  R. H. Wentorf Diamond growth rates , 1971 .

[24]  B.J. Baliga,et al.  Trapezoidal-groove Schottky-gate vertical-channel GaAs FET (GaAs static induction transistor) , 1985, IEEE Electron Device Letters.

[25]  R. M. Chrenko Boron, the Dominant Acceptor in Semiconducting Diamond , 1973 .

[26]  R.A. Murphy,et al.  High-temperature point-contact transistors and Schottky diodes formed on synthetic boron-doped diamond , 1987, IEEE Electron Device Letters.

[27]  W. C. Nieberding,et al.  High-Temperature Electronic Requirements in Aeropropulsion Systems , 1981, IEEE Transactions on Industrial Electronics.

[28]  R. Campbell Whatever Happened to Silicon Carbide , 1982, IEEE Transactions on Industrial Electronics.

[29]  J. Angus,et al.  Low-Pressure, Metastable Growth of Diamond and "Diamondlike" Phases , 1988, Science.

[30]  B. J. Baliga,et al.  Semiconductors for high‐voltage, vertical channel field‐effect transistors , 1982 .

[31]  L. Ralph Dawson,et al.  Recent Advances in Gallium Phosphide Junction Devices for High-Temperature Electronic Applications , 1982, IEEE Transactions on Industrial Electronics.

[32]  I. Pfaffeneder,et al.  Breakdown field in vapor‐grown silicon carbide p‐n junctions , 1977 .

[33]  B.J. Baliga,et al.  150 Volt vertical channel GaAs FET , 1982, 1982 International Electron Devices Meeting.

[34]  F. Himpsel,et al.  Schottky barriers on diamond (1 1 1) , 1980 .

[35]  A. Goodman,et al.  The COMFET—A new high conductance MOS-gated device , 1983, IEEE Electron Device Letters.

[36]  N. Fujimori,et al.  Characterization of conducting diamond films , 1986 .

[37]  M. Stoisiek,et al.  MOS GTO—A turn off thyristor with MOS-controlled emitter shorts , 1985, 1985 International Electron Devices Meeting.

[38]  G. Gildenblat,et al.  Electrical characteristics of Schottky diodes fabricated using plasma assisted chemical vapor deposited diamond films , 1988 .

[39]  S. Sze,et al.  AVALANCHE BREAKDOWN VOLTAGES OF ABRUPT AND LINEARLY GRADED p‐n JUNCTIONS IN Ge, Si, GaAs, AND GaP , 1966 .

[40]  M.S. Adler,et al.  Optimum semiconductors for power field effect transistors , 1981, IEEE Electron Device Letters.