The Kazhdan-Lusztig polynomials of uniform matroids

The Kazhdan-Lusztig polynomial of a matroid was introduced by Elias, Proudfoot, and Wakefield [{\it Adv. Math. 2016}]. Let $U_{m,d}$ denote the uniform matroid of rank $d$ on a set of $m+d$ elements. Gedeon, Proudfoot, and Young [{\it J. Combin. Theory Ser. A, 2017}] pointed out that they can derive an explicit formula of the Kazhdan-Lusztig polynomials of $U_{m,d}$ using equivariant Kazhdan-Lusztig polynomials. In this paper we give two alternative explicit formulas, which allow us to prove the real-rootedness of the Kazhdan-Lusztig polynomials of $U_{m,d}$ for $2\leq m\leq 15$ and all $d$'s. The case $m=1$ was previously proved by Gedeon, Proudfoot, and Young [{\it S\'{e}m. Lothar. Combin. 2017}]. We further determine the $Z$-polynomials of all $U_{m,d}$'s and prove the real-rootedness of the $Z$-polynomials of $U_{m,d}$ for $2\leq m\leq 15$ and all $d$'s. Our formula also enables us to give an alternative proof of Gedeon, Proudfoot, and Young's formula for the Kazhdan-Lusztig polynomials of $U_{m,d}$'s without using the equivariant Kazhdan-Lusztig polynomials.

[1]  Benjamin Young,et al.  The equivariant Kazhdan-Lusztig polynomial of a matroid , 2016, J. Comb. Theory, Ser. A.

[2]  Max Wakefield,et al.  Intersection cohomology of the symmetric reciprocal plane , 2015, 1504.07348.

[3]  Ben Elias,et al.  The Kazhdan-Lusztig polynomial of a matroid , 2014, 1412.7408.

[4]  George Csordas,et al.  COMPOSITION THEOREMS, MULTIPLIER SEQUENCES AND COMPLEX ZERO DECREASING SEQUENCES , 2004 .

[5]  Fredrik Meyer,et al.  Representation theory , 2015 .

[6]  Q. I. Rahman,et al.  Analytic theory of polynomials , 2002 .

[7]  Yuan Xu,et al.  The Z-Polynomial of a Matroid , 2017, Electron. J. Comb..

[8]  Katie R. Gedeon,et al.  Kazhdan-Lusztig polynomials of matroids: a survey of results and conjectures , 2016, 1611.07474.

[9]  Arthur L. B. Yang,et al.  Kazhdan-Lusztig polynomials of fan matroids, wheel matroids, and whirl matroids , 2018, J. Comb. Theory, Ser. A.

[10]  Peter Paule,et al.  A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities , 1995, J. Symb. Comput..

[11]  Aim'e Lachal,et al.  A trick around Fibonacci, Lucas and Chebyshev , 2013, 1302.0357.

[12]  Thomas C. Craven,et al.  Intersections of Real Closed Fields , 1980, Canadian Journal of Mathematics.

[13]  Katie R. Gedeon Kazhdan-Lusztig Polynomials of Thagomizer Matroids , 2016, Electron. J. Comb..

[14]  Max D. Wakefield,et al.  Stirling numbers in braid matroid Kazhdan-Lusztig polynomials , 2018, Adv. Appl. Math..

[15]  G. Csordas,et al.  LOCATION OF ZEROS PART I: REAL POLYNOMIALS AND ENTIRE FUNCTIONS , 1983 .