Lead Induced Responses of Pfaffia glomerata, an Economically Important Brazilian Medicinal Plant, Under In Vitro Culture Conditions

[1]  R. D. Tripathi,et al.  Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. , 2009, Journal of hazardous materials.

[2]  D. Gupta,et al.  Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. , 2006, Chemosphere.

[3]  Bernd Nowack,et al.  The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. , 2006, Chemosphere.

[4]  Ricardo Antunes Azevedo,et al.  Making the life of heavy metal-stressed plants a little easier. , 2005, Functional plant biology : FPB.

[5]  Masood Ahmad,et al.  Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. , 2005, The Science of the total environment.

[6]  C. Sudhakar,et al.  Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). , 2005, Chemosphere.

[7]  Z. Xiong,et al.  Bioaccumulation and ecophysiological responses to copper stress in two populations of Rumex dentatus L. from Cu contaminated and non-contaminated sites , 2004 .

[8]  D. Butcher,et al.  Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics , 2004 .

[9]  Kunquan Li,et al.  Lead toxicity, uptake, and translocation in different rice cultivars , 2003 .

[10]  S. Verma,et al.  Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants , 2003 .

[11]  Marco Aurélio Carbone Carneiro,et al.  Comportamento de espécies herbáceas em misturas de solo com diferentes graus de contaminação com metais pesados , 2002 .

[12]  R. Mittler Oxidative stress, antioxidants and stress tolerance. , 2002, Trends in plant science.

[13]  D. Barałkiewicz,et al.  Accumulation and detoxification of lead ions in legumes. , 2002, Phytochemistry.

[14]  J. Rocha,et al.  Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbic acid in liver and brain of mice. , 2001, Pharmacology & toxicology.

[15]  I. Izquierdo,et al.  Psychopharmacological screening of Pfaffia glomerata Spreng. (Amarathanceae) in rodents. , 2000, Journal of ethnopharmacology.

[16]  Cho,et al.  Mercury-induced oxidative stress in tomato seedlings. , 2000, Plant science : an international journal of experimental plant biology.

[17]  G. Johal,et al.  Cell death in maize. , 2000 .

[18]  J. Vangronsveld,et al.  Physiological Responses to Heavy Metals in Higher Plants; Defence against Oxidative Stress , 1999 .

[19]  M. Wierzbicka,et al.  The effect of lead on seed imbibition and germination in different plant species , 1998 .

[20]  F. Fodor,et al.  Lead uptake, distribution, and remobilization in cucumber , 1998 .

[21]  A. Chaoui,et al.  Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.) , 1997 .

[22]  R. Singh,et al.  Response of higher plants to lead contaminated environment. , 1997, Chemosphere.

[23]  M. Watanabe Phytoremediation on the brink of commericialization. , 1997, Environmental science & technology.

[24]  T. K. Prasad Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities , 1996 .

[25]  Meetu Gupta,et al.  Lead induced changes in glutathione and phytochelatin in Hydrilla verticillata (l.f.) royle , 1995 .

[26]  O. P. Sehgal,et al.  Lipid peroxidation and superoxide production in cowpea (Vigna unguiculata) leaves infected with tobacco ringspot virus or southern bean mosaic virus , 1993 .

[27]  C. Sudhakar,et al.  Lead tolerance of certain legume species grown on lead ore tailings , 1992 .

[28]  S. Mori,et al.  Excess copper induces a cytosolic Cu,Zn -superoxide dismutase in soybean root , 1992 .

[29]  A. Baker,et al.  Ecophysiology of metal uptake by tolerant plants. , 1990 .

[30]  A. J. Shaw Heavy Metal Tolerance in Plants: Evolutionary Aspects , 1989 .

[31]  J. Nriagu,et al.  Quantitative assessment of worldwide contamination of air, water and soils by trace metals , 1988, Nature.

[32]  K. A. Gomez,et al.  Statistical Procedures for Agricultural Research. , 1984 .

[33]  D. Tennant,et al.  A test of a modified line intersect method of estimating root length , 1975 .

[34]  I. Fridovich,et al.  The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. , 1972, The Journal of biological chemistry.

[35]  R. Paull,et al.  Some aspects of lead in plant nutrition , 1972, Plant and Soil.

[36]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .

[37]  G. Ellman,et al.  Tissue sulfhydryl groups. , 1959, Archives of biochemistry and biophysics.

[38]  Oliver H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[39]  T. Anderson,et al.  [acs symposium series] phytoremediation of soil and water contaminants volume 664 || phytoextraction of lead from contaminated soils , 1997 .

[40]  Z. Szigeti,et al.  Effects of Pb and Cd on cucumber depending on the Fe-complex in the culture solution , 1996 .

[41]  Donghua Liu,et al.  Effects of lead on root growth, cell division, and nucleolus of Allium cepa. , 1994, Environmental pollution.

[42]  Keiko Kato,et al.  A nortriterpenoid, triterpenoids and ecdysteroids from Pfaffia glomerata , 1993 .

[43]  A. Kabata-Pendias Trace elements in soils and plants , 1984 .

[44]  H. Aebi,et al.  Catalase in vitro. , 1984, Methods in enzymology.

[45]  G. Ellman TISSUE SULPHYDRYL GROUPS , 1959 .

[46]  D. Arnon COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. , 1949, Plant physiology.