A posteriori dual-mixed adaptive finite element error control for Lamé and Stokes equations
暂无分享,去创建一个
[1] J. Douglas,et al. PEERS: A new mixed finite element for plane elasticity , 1984 .
[2] Bernardo Cockburn,et al. A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems , 2004, SIAM J. Numer. Anal..
[3] O. C. Zienkiewicz,et al. The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .
[4] Susanne C. Brenner,et al. Finite Element Methods , 2000 .
[5] M. Fortin,et al. Dual hybrid methods for the elasticity and the Stokes problems: a unified approach , 1997 .
[6] Gary R. Consolazio,et al. Finite Elements , 2007, Handbook of Dynamic System Modeling.
[7] Ilio Galligani,et al. Mathematical Aspects of Finite Element Methods , 1977 .
[8] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[9] Carsten Carstensen,et al. A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.
[10] L. Herrmann. Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variational Theorem , 1965 .
[11] Rüdiger Verfürth,et al. A posteriori error estimators for the Stokes equations II non-conforming discretizations , 1991 .
[12] Carsten Carstensen,et al. Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .
[13] Paola Causin,et al. A dual-mixed hybrid formulation for fluid mechanics problems: Mathematical analysis and application to semiconductor process technology , 2003 .
[14] Bernardo Cockburn,et al. Error analysis of variable degree mixed methods for elliptic problems via hybridization , 2005, Math. Comput..
[15] R. Verfürth. A posteriori error estimators for the Stokes equations , 1989 .
[16] Carsten Carstensen,et al. Locking-free adaptive mixed finite element methods in linear elasticity , 2000 .
[17] Gabriel N. Gatica,et al. A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate , 2002, Numerische Mathematik.
[18] S. Repin,et al. ON THE FUNCTIONAL TYPE A POSTERIORI ERROR ESTIMATES FOR THE STOKES PROBLEM. , 2004 .
[19] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[20] Carsten Carstensen,et al. A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems , 2001, Math. Comput..
[21] D. Arnold,et al. Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .
[22] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[23] D. Arnold,et al. A new mixed formulation for elasticity , 1988 .
[24] Carsten Carstensen,et al. A posteriori error estimates for mixed FEM in elasticity , 1998, Numerische Mathematik.
[25] Gabriel N. Gatica,et al. A mixed‐FEM formulation for nonlinear incompressible elasticity in the plane , 2002 .
[26] Norbert Heuer,et al. An implicit–explicit residual error estimator for the coupling of dual‐mixed finite elements and boundary elements in elastostatics , 2001 .
[27] Carsten Carstensen,et al. Uniform convergence and a posteriori error estimators for the enhanced strain finite element method , 2004, Numerische Mathematik.
[28] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[29] W. Gibbs,et al. Finite element methods , 2017, Graduate Studies in Mathematics.