Molecular simulation applied to fluid properties in the oil and gas industry

In order to illustrate the use of molecular simulation methods in the oil and gas industry, three typical fields of application are considered. The first of these is the prediction of fluid phase equilibria by Gibbs ensemble simulation, exemplified here by the systematic determination of full phase diagrams (including liquid–vapour critical points) for binary systems of hydrogen sulphide and various hydrocarbons (n-alkanes with 2–20 carbon atoms, benzene, ethylbenzene, cyclohexane). The second type of application is the adsorption equilibria in zeolites. For these applications, the comprehensive modelling of the interplay of hydrocarbon adsorption with polar compounds (alkanethiols, water) and cation mobility is a still a challenge for simulation methods. However encouraging results are shown when the different contributions to interaction energy (dispersion–repulsion, electrostatic, polarization) are separately addressed when simulating the adsorption of n-alkanes in sodium faujasites. The third field considered is the determination of transport properties, particularly viscosity, from equilibrium molecular dynamics (MD). Although they describe rather well the influence of pressure, temperature and carbon number, existing force fields for n-alkanes are found to underestimate the viscosity of liquids. By a specific modification of the torsion potential which does not alter the equilibrium conformations, the viscosity is significantly improved without compromising phase equilibrium properties. A brief outline of other current and future applications of molecular simulation in the oil and gas industry is given in conclusion.

[1]  A. Fuchs,et al.  Molecular simulation studies of water physisorption in zeolites. , 2006, Physical chemistry chemical physics : PCCP.

[2]  Philippe Ungerer,et al.  Optimization of the anisotropic united atoms intermolecular potential for n-alkanes: improvement of transport properties. , 2006, The Journal of chemical physics.

[3]  Philippe Ungerer,et al.  Applications of Molecular Simulation in Oil and Gas Production and Processing , 2006 .

[4]  George Jackson,et al.  Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials. , 2005, The Journal of chemical physics.

[5]  G. Kamath,et al.  Effect of partial charge parametrization on the fluid phase behavior of hydrogen sulfide. , 2005, The Journal of chemical physics.

[6]  A. D. Mackie,et al.  Transport coefficients and dynamic properties of hydrogen sulfide from molecular simulation. , 2005, The Journal of chemical physics.

[7]  Philippe Ungerer,et al.  Applications of Molecular Simulation In the Oil and Gas Industry: Monte Carlo Methods , 2005 .

[8]  J. Ávalos,et al.  Histogram reweighting method for dynamic properties. , 2005, Physical review letters.

[9]  A. D. Mackie,et al.  Optimized intermolecular potential for aromatic hydrocarbons based on anisotropic united atoms. III. Polyaromatic and naphthenoaromatic hydrocarbons. , 2005, The journal of physical chemistry. B.

[10]  W. Wakeham,et al.  The Viscosity and Density of n-Dodecane and n-Octadecane at Pressures up to 200 MPa and Temperatures up to 473 K , 2004 .

[11]  B. Smit,et al.  Understanding the role of sodium during adsorption: a force field for alkanes in sodium-exchanged faujasites. , 2004, Journal of the American Chemical Society.

[12]  A. D. Mackie,et al.  Optimized Intermolecular Potential for Aromatic Hydrocarbons Based on Anisotropic United Atoms. 2. Alkylbenzenes and Styrene , 2004 .

[13]  A. D. Mackie,et al.  Optimized Intermolecular Potential for Aromatic Hydrocarbons Based on Anisotropic United Atoms. 1. Benzene , 2004 .

[14]  P. Ungerer,et al.  Application of Gibbs Ensemble and NPT Monte Carlo Simulation to the Development of Improved Processes for H2S-rich Gases , 2004 .

[15]  Rajamani Krishna,et al.  United Atom Force Field for Alkanes in Nanoporous Materials , 2004 .

[16]  A. Boutin,et al.  Adsorption of hydrocarbons in zeolites from molecular simulations. The alkane–ferrierite system revisited , 2004 .

[17]  J. Ely,et al.  Aua model NEMD and EMD simulations of the shear viscosity of alkane and alcohol systems , 2004 .

[18]  P. Ungerer,et al.  Development of a transferable guest?host force field for adsorption of hydrocarbons in zeolites , 2003 .

[19]  Shyamal K. Nath,et al.  Molecular Simulation of Vapor−Liquid Phase Equilibria of Hydrogen Sulfide and Its Mixtures with Alkanes , 2003 .

[20]  B. Smit,et al.  Shape selectivity through entropy , 2003 .

[21]  J. Petravic,et al.  Transport Coefficients of Xylene Isomers , 2002 .

[22]  M. Klein,et al.  Vapor-liquid interfacial properties of mutually saturated water/1-butanol solutions. , 2002, Journal of the American Chemical Society.

[23]  B. Rumpf,et al.  Prediction of the vapor–liquid phase equilibrium of hydrogen sulfide and the binary system water–hydrogen sulfide by molecular simulation , 2002 .

[24]  P. Ungerer,et al.  Prediction of Equilibrium Properties of Cyclic Alkanes by Monte Carlo SimulationNew Anisotropic United Atoms Intermolecular PotentialNew Transfer Bias Method , 2002 .

[25]  P. Malfreyt,et al.  Direct Monte Carlo simulations of the equilibrium properties of n-pentane liquid-vapor interface , 2002 .

[26]  A. Fuchs,et al.  Monte Carlo simulation of branched alkanes and long chain n -alkanes with anisotropic united atoms intermolecular potential , 2002 .

[27]  C. Manke,et al.  Predicting the Newtonian viscosity of complex fluids from high strain rate molecular simulations , 2002 .

[28]  J. Pablo,et al.  Multicanonical parallel tempering , 2002, cond-mat/0201179.

[29]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[30]  J. Moïse,et al.  Adsorption of water vapor on X and Y zeolites exchanged with barium , 2001 .

[31]  E. Maginn,et al.  Impact of Molecular Architecture on the High-Pressure Rheology of Hydrocarbon Fluids , 2000 .

[32]  Philippe Ungerer,et al.  Derivation of an Optimized Potential Model for Phase Equilibria (OPPE) for Sulfides and Thiols , 2000 .

[33]  Dag Kristian Dysthe,et al.  Fluid transport properties by equilibrium molecular dynamics. III. Evaluation of united atom interaction potential models for pure alkanes , 2000 .

[34]  M. Lísal,et al.  Molecular simulation of multicomponent reaction and phase equilibria in MTBE ternary system , 2000 .

[35]  Philippe Ungerer,et al.  Optimization of the anisotropic united atoms intermolecular potential for n-alkanes , 2000 .

[36]  Dirk Reith,et al.  Cause and Effect Reversed in Non-Equilibrium Molecular Dynamics: An Easy Route to Transport Coefficients , 1999 .

[37]  Edward J. Maginn,et al.  Molecular Simulation of Poly-α-olefin Synthetic Lubricants: Impact of Molecular Architecture on Performance Properties , 1999 .

[38]  A. Fuchs,et al.  Molecular Simulation of p-Xylene and m-Xylene Adsorption in Y Zeolites. Single Components and Binary Mixtures Study , 1999 .

[39]  Athanassios Z. Panagiotopoulos,et al.  New intermolecular potential models for benzene and cyclohexane , 1999 .

[40]  S. Auerbach,et al.  New Force Field for Na Cations in Faujasite-Type Zeolites , 1999 .

[41]  A. Fuchs,et al.  Molecular Simulation of Vapour-Liquid Coexistence Curves for Hydrogen Sulfide-Alkane and Carbon Dioxide-Alkane Mixtures , 1999 .

[42]  F. Escobedo Tracing coexistence lines in multicomponent fluid mixtures by molecular simulation , 1999 .

[43]  Edward J. Maginn,et al.  A biased grand canonical Monte Carlo method for simulating adsorption using all-atom and branched united atom models , 1999 .

[44]  Freek Kapteijn,et al.  Modeling permeation of binary mixtures through zeolite membranes , 1999 .

[45]  D. Dysthe,et al.  Fluid transport properties by equilibrium molecular dynamics. I. Methodology at extreme fluid states , 1999 .

[46]  D. Dysthe,et al.  Fluid transport properties by equilibrium molecular dynamics. II. Multicomponent systems , 1999 .

[47]  B. Smit,et al.  Molecular Simulations of Adsorption Isotherms for Linear and Branched Alkanes and Their Mixtures in Silicalite , 1999 .

[48]  Jeffrey J. Potoff,et al.  Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture , 1998 .

[49]  D. Dysthe,et al.  Prediction of Fluid Mixture Transport Properties by Molecular Dynamics , 1998 .

[50]  G. Baron,et al.  Adsorption of normal and branched paraffins in faujasite zeolites NaY, HY, Pt/NaY and USY , 1997 .

[51]  K. R. Harris,et al.  Temperature and Density Dependence of the Viscosity of Octane and Toluene , 1997 .

[52]  T. Kristóf,et al.  Effective Intermolecular Potential for Fluid Hydrogen Sulfide , 1997 .

[53]  R. L. Rowley,et al.  Predicting the viscosity of alkanes using nonequilibrium molecular dynamics: Evaluation of intermolecular potential models , 1997 .

[54]  G. Grest,et al.  Viscosity calculations of n-alkanes by equilibrium molecular dynamics , 1997 .

[55]  D. B. Shah,et al.  Adsorption Equilibria of C5−C10 Normal Alkanes in Silicalite Crystals , 1996 .

[56]  Giorgio S. Soave,et al.  A noncubic equation of state for the treatment of hydrocarbon fluids at reservoir conditions , 1995 .

[57]  Wilding,et al.  Tricritical universality in a two-dimensional spin fluid. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[58]  Kwong H. Yung,et al.  Carbon Dioxide's Liquid-Vapor Coexistence Curve And Critical Properties as Predicted by a Simple Molecular Model , 1995 .

[59]  B. Smit Grand canonical Monte Carlo simulations of chain molecules: adsorption isotherms of alkanes in zeolites , 1995 .

[60]  B. Smit Simulating the adsorption isotherms of methane, ethane, and propane in the zeolite silicalite , 1995 .

[61]  K. Travis,et al.  A molecular dynamics study of the coupling of torsional motions to self‐diffusion in liquid n‐hexane , 1995 .

[62]  Berend Smit,et al.  Computer simulations of vapor-liquid phase equilibria of n-alkanes , 1995 .

[63]  Rafiqul Gani,et al.  Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method , 1995 .

[64]  D. Kofke,et al.  Coexistence diagrams of mixtures by molecular simulation , 1994 .

[65]  Randall Q. Snurr,et al.  Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions , 1993 .

[66]  Wilfred F. van Gunsteren,et al.  The viscosity of SPC and SPC/E water at 277 and 300 K , 1993 .

[67]  D. Theodorou,et al.  A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses , 1993 .

[68]  William L. Jorgensen,et al.  Monte Carlo simulations of the hydration of substituted benzenes with OPLS potential functions , 1993, J. Comput. Chem..

[69]  William L. Jorgensen,et al.  Monte Carlo simulations of pure liquid substituted benzenes with OPLS potential functions , 1993, J. Comput. Chem..

[70]  A. E. Mather,et al.  Solubility of hydrogen sulfide in n-eicosane at elevated pressure , 1992 .

[71]  S. Sastri,et al.  A new group contribution method for predicting viscosity of organic liquids , 1992 .

[72]  J. Verduijn,et al.  Influence of the framework composition on the cation-site energy: the structures of dehydrated NaxHGaY (x = 54, 36, and 21) zeolites , 1992 .

[73]  Juan J. de Pablo,et al.  Estimation of the chemical potential of chain molecules by simulation , 1992 .

[74]  R. L. Rowley,et al.  Non-equilibrium molecular dynamics simulations of structured molecules. II: Isomeric effects on the viscosity of models for n-hexane cyclohexane and benzene , 1992 .

[75]  S. Toxvaerd,et al.  Self‐diffusion in n‐alkane fluid models , 1991 .

[76]  William L. Jorgensen,et al.  Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water, chloroform, and liquid benzene , 1990 .

[77]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[78]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[79]  Michael R. Moldover,et al.  Interfacial tension and vapor–liquid equilibria in the critical region of mixtures , 1988 .

[80]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[81]  M. Neumann The dielectric constant of water. Computer simulations with the MCY potential , 1985 .

[82]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[83]  A. S. Cullick,et al.  Densities and viscosities of mixtures of carbon dioxide and n-decane from 310 to 403 K and 7 to 30 MPa , 1984 .

[84]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[85]  Douglas M. Ruthven,et al.  Principles of Adsorption and Adsorption Processes , 1984 .

[86]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[87]  Gary P. Morriss,et al.  Isothermal-isobaric molecular dynamics , 1983 .

[88]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[89]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[90]  Byung-Ik Lee,et al.  A generalized thermodynamic correlation based on three‐parameter corresponding states , 1975 .

[91]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[92]  J. Prausnitz,et al.  On the thermodynamics of alcohol—hydrocarbon solutions , 1967 .

[93]  John Lohrenz,et al.  Calculating Viscosities of Reservoir Fluids From Their Compositions , 1964 .

[94]  K. Kobe The properties of gases and liquids , 1959 .

[95]  B. Sage,et al.  PHASE EQUILIBRIA IN HYDROCARBON SYSTEMS - Volumetric and Phase Behavior of n-Pentane–Hydrogen Sulfide System , 1951 .

[96]  P. Ungerer,et al.  Development of a transferable guest-host force field for adsorption of hydrocarbons in zeolites. II. Prediction of alkenes adsorption and alkane/alkene selectivity in silicalite , 2004 .

[97]  C. Beauvais,et al.  Distribution of Sodium Cations in Faujasite-Type Zeolite: A Canonical Parallel Tempering Simulation Study , 2004 .

[98]  J. Hansen,et al.  Basic Concepts for Simple and Complex Liquids , 2003 .

[99]  A. Fuchs,et al.  Molecular simulation of adsorption equilibria of xylene isomer mixtures in faujasite zeolites. A study of the cation exchange effect on adsorption selectivity , 2001 .

[100]  D. Richon,et al.  Vapor-Liquid Equilibria for Hydrogen Sulfide + Hexane, + Cyclohexane, + Benzene, + Pentadecane, and + (Hexane + Pentadecane) , 1995 .

[101]  C. Brooks Computer simulation of liquids , 1989 .

[102]  F. R. Williamson,et al.  Vapor-liquid equilibrium of near-critical binary alkane mixtures , 1986 .

[103]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .

[104]  A. Fredenslund,et al.  Viscosity of Crude Oils , 1984 .

[105]  D. Nicholson,et al.  Computer simulation and the statistical mechanics of adsorption , 1982 .

[106]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid alkanes , 1978 .

[107]  M. Huron,et al.  Vapour-liquid equilibrium and critical locus curve calculations with the soave equation for hydrocarbon systems with carbon dioxide and hydrogen sulphide , 1977 .

[108]  J. S. Rowlinson,et al.  Molecular Thermodynamics of Fluid-Phase Equilibria , 1969 .