Variance-aware multiple importance sampling

Many existing Monte Carlo methods rely on multiple importance sampling (MIS) to achieve robustness and versatility. Typically, the balance or power heuristics are used, mostly thanks to the seemingly strong guarantees on their variance. We show that these MIS heuristics are oblivious to the effect of certain variance reduction techniques like stratification. This shortcoming is particularly pronounced when unstratified and stratified techniques are combined (e.g., in a bidirectional path tracer). We propose to enhance the balance heuristic by injecting variance estimates of individual techniques, to reduce the variance of the combined estimator in such cases. Our method is simple to implement and introduces little overhead.

[1]  Luca Fascione,et al.  The path tracing revolution in the movie industry , 2015, SIGGRAPH Courses.

[2]  Philipp Slusallek,et al.  Optimal multiple importance sampling , 2019, ACM Trans. Graph..

[3]  James Arvo,et al.  Unbiased sampling techniques for image synthesis , 1991, SIGGRAPH.

[4]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[5]  Mateu Sbert,et al.  Adaptive multiple importance sampling for general functions , 2017, The Visual Computer.

[6]  Hera Y. He,et al.  Optimal mixture weights in multiple importance sampling , 2014, 1411.3954.

[7]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[8]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[9]  A. Owen,et al.  Safe and Effective Importance Sampling , 2000 .

[10]  Martin Sik,et al.  Survey of Markov Chain Monte Carlo Methods in Light Transport Simulation , 2020, IEEE Transactions on Visualization and Computer Graphics.

[11]  Jacopo Pantaleoni,et al.  A path space extension for robust light transport simulation , 2012, ACM Trans. Graph..

[12]  Tobias Ritschel,et al.  On-line learning of parametric mixture models for light transport simulation , 2014, ACM Trans. Graph..

[13]  T. Hesterberg,et al.  Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .

[14]  Csaba Kelemen,et al.  Simple and Robust Mutation Strategy for Metropolis Light Transport Algorithm , 2001 .

[15]  Justin Talbot,et al.  Energy redistribution path tracing , 2005, ACM Trans. Graph..

[16]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[17]  Philipp Slusallek,et al.  Light transport simulation with vertex connection and merging , 2012, ACM Trans. Graph..

[18]  Mateu Sbert,et al.  Variance Analysis of Multi‐sample and One‐sample Multiple Importance Sampling , 2016, Comput. Graph. Forum.

[19]  Toshiya Hachisuka,et al.  Robust light transport simulation via metropolised bidirectional estimators , 2016, ACM Trans. Graph..

[20]  Toshiya Hachisuka,et al.  Multiplexed metropolis light transport , 2014, ACM Trans. Graph..

[21]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[22]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[23]  Derek Nowrouzezahrai,et al.  Unifying points, beams, and paths in volumetric light transport simulation , 2014, ACM Trans. Graph..

[24]  Hendrik P. A. Lensch,et al.  Product Importance Sampling for Light Transport Path Guiding , 2016, Comput. Graph. Forum.

[25]  Philipp Slusallek,et al.  Importance Caching for Complex Illumination , 2012, Comput. Graph. Forum.

[26]  Jan Novák,et al.  Image-space control variates for rendering , 2016, ACM Trans. Graph..

[27]  Frédo Durand,et al.  Eurographics Symposium on Rendering 2015 Probabilistic Connections for Bidirectional Path Tracing Bidirectional Path Tracing Probabilistic Connections for Bidirectional Path Tracing , 2022 .

[28]  Philipp Slusallek,et al.  Efficient Caustic Rendering with Lightweight Photon Mapping , 2018, Comput. Graph. Forum.

[29]  Thorsten Grosch,et al.  An Improved Multiple Importance Sampling Heuristic for Density Estimates in Light Transport Simulations , 2018, EGSR.

[30]  Mateu Sbert,et al.  Multiple importance sampling characterization by weighted mean invariance , 2018, The Visual Computer.

[31]  Johannes Jendersie,et al.  Variance Reduction via Footprint Estimation in the Presence of Path Reuse , 2019, Ray Tracing Gems.