Magnetic, heat capacity, and conductivity studies of ferrimagnetic MnCr 2 S 4 single crystals

Magnetization, ferromagnetic resonance (FMR), heat capacity, and electrical conductivity of ${\mathrm{MnCr}}_{2}{\mathrm{S}}_{4}$ spinel single crystals were investigated as a function of temperature and magnetic field. Two \ensuremath{\lambda} anomalies observed in the heat capacity correlate with magnetic phase transformations and their field dependence found in magnetization measurements. The upper \ensuremath{\lambda} anomaly at a temperature of $\ensuremath{\sim}65\mathrm{K}$ marks the onset of ferrimagnetic ordering, while the lower one at $\ensuremath{\sim}4.8\mathrm{K}$ indicates an additional antiferromagnetic ordering of the $A(\mathrm{Mn})$ sublattice. Below the Curie temperature, magnetization, and FMR measurements revealed a positive magnetocrystalline anisotropy. The dominating role of the $B(\mathrm{Cr})$ sublattice in generating this anisotropy is shown.

[1]  S. Horn,et al.  Anomalous magneto-crystalline anisotropy of MnCr2S4 single crystals , 2002 .

[2]  M. Biberacher,et al.  High-field ESR spectroscopy of the spin dynamics in La 1 − x Sr x MnO 3 ( x 0 . 1 7 5 ) , 2002 .

[3]  Min‐Sik Park,et al.  Half-metallic antiferromagnets in thiospinels , 2001, cond-mat/0105492.

[4]  J. Wosnitza,et al.  CsMn(Br x I 1-x ) 3 : Crossover from an XY to an Ising chiral antiferromagnet , 2001, cond-mat/0103011.

[5]  M. Salamon,et al.  Magnetic heat capacity in lanthanum manganite single crystals , 2000 .

[6]  V. Tsurkan,et al.  Exchange splitting of the Cr, Fe and Mn 3s XPS spectra in some ternary magnetic semiconductor sulphides , 2000 .

[7]  Lee,et al.  Local spin resonance and spin-peierls-like phase transition in a geometrically frustrated antiferromagnet , 1999, Physical review letters.

[8]  A. Szewczyk,et al.  Magnetic phase transition in MnCr2-2xIn2xS4crystals , 1999 .

[9]  P. Lunkenheimer,et al.  Charge carrier localization in investigated by ac conductivity measurements , 1999 .

[10]  H. Kawamura Universality of phase transitions of frustrated antiferromagnets , 1998, cond-mat/9805134.

[11]  V. Tsurkan,et al.  Spin glass and percolation in MnCr2−2xIn2xS4 system , 1997 .

[12]  M. Katori,et al.  ANOMALOUS HEAT CAPACITY OF ANTIFERROMAGNET FEBR2 IN A MAGNETIC FIELD , 1997 .

[13]  J. Coey,et al.  Magnetic localization in mixed-valence manganites , 1997 .

[14]  R. Cava,et al.  Colossal magnetoresistance in Cr-based chalcogenide spinels , 1997, Nature.

[15]  A. Zettl,et al.  Pr-doping of the high-magnetoresistance perovskite Nd23Sr13MnO3 , 1995 .

[16]  S. Pouget,et al.  Static critical properties of disordered ferromagnets studied by superconducting quantum interference device magnetometry and small‐angle neutron‐scattering techniques , 1994 .

[17]  Pecharsky,et al.  Zero-field and magnetic-field low-temperature heat capacity of solid-state electrotransport-purified erbium. , 1993, Physical review. B, Condensed matter.

[18]  M. Nogués,et al.  Magnetic structure of substituted MnCr2S4 , 1980 .

[19]  R. Plumier The magnetic structure of sulfur spinel MnCr2S4 under applied magnetic field , 1980 .

[20]  M. Nogués,et al.  Phase relationships and magnetic phase diagram in the system Mn1−xCuxCr2S4 , 1978 .

[21]  E. Demeo,et al.  Magnetic susceptibility of MnIn2S4 , 1975 .

[22]  R. Plumier,et al.  Sublattice magnetizations and magnetostrictive effects in sulphospinel MnCr2S4 , 1972 .

[23]  R. Howard,et al.  Heat Capacity Measurements on Small Samples at Low Temperatures , 1972 .

[24]  A. Arrott Problem of Using Kink‐Point Locus to Determine the Critical Exponent β , 1971 .

[25]  P. Arquès Modèle de fonction aléatoire de couverture applicable aux phénomènes de filiation à base poissonnienne , 1971 .

[26]  W. Johnson,et al.  CALORIMETRIC INVESTIGATION OF THE ANTIFERROMAGNETIC TRANSITION IN NiCl2. 6H2O , 1970 .

[27]  R. Butera,et al.  Nature of the Antiferromagnetic-Paramagnetic Transition in MnCl2·4H2O , 1970 .

[28]  R. Plumier,et al.  Magnetic Behavior of MnCr2S4 in High Magnetic Fields , 1970 .

[29]  S. A. Friedberg,et al.  THE THERMAL BEHAVIOR OF THE ANTIFERROMAGNET MnBr2.4H2O IN APPLIED MAGNETIC FIELDS. , 1969 .

[30]  F. Lotgering Spin canting in MnCr2S4 , 1968 .

[31]  G. Seidel,et al.  Steady-State, ac-Temperature Calorimetry , 1968 .

[32]  P. Baltzer,et al.  Magnetic and Crystallographic Properties of the System MnCr2S4–MnInCrS4 , 1968 .

[33]  J. M. Hastings,et al.  Magnetic Structure and Metamagnetism of HgCr2S4 , 1967 .

[34]  S. B. Berger,et al.  Ferromagnetic Resonance of Single Crystals of CdCr2S4 and CdCr2Se4 , 1967 .

[35]  P. Wojtowicz,et al.  Exchange Interactions in Ferromagnetic Chromium Chalcogenide Spinels , 1966 .

[36]  A. Oleś,et al.  Antiferromagnetism of the Spinel MnGa2O4 , 1966 .

[37]  N. Menyuk,et al.  Magnetic Properties of MnCr2S4 , 1965 .

[38]  F. Morin,et al.  Specific Heats of Transition Metal Superconductors , 1963 .

[39]  N. Menyuk,et al.  Classical Theory of the Ground Spin-State in Cubic Spinels , 1962 .

[40]  J. M. Hastings,et al.  Magnetic Structure of Manganese Chromite , 1962 .

[41]  S. Shinozaki Specific Heat of Yttrium Iron Garnet from 1.5° to 4.2°K , 1961 .

[42]  S. Pollack,et al.  The Specific Heat of Ferrites at Liquid Helium Temperatures. , 1962 .

[43]  T. Kaplan Classical Theory of Spin Configurations in the Cubic Spinel , 1960 .

[44]  D. T. Edmonds,et al.  Effective Exchange Constant in Yttrium Iron Garnet , 1959 .

[45]  J. Kouvel Specific Heat of a Magnetite Crystal at Liquid Helium Temperatures , 1956 .

[46]  C. Kittel,et al.  Antiferromagnetic Arrangements in Ferrites , 1952 .

[47]  L. Néel,et al.  Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme , 1948 .