Anisotropic mesh optimization and its application in adaptivity

The construction of solution-adapted meshes is addressed within an optimization framework. An approximation of the second spatial derivative of the solution is used to get a suitable metric in the computational domain. A mesh quality is proposed and optimized under this metric, accounting for both the shape and the size of the elements. For this purpose, a topological and geometrical mesh improvement method of high generality is introduced. It is shown that the adaptive algorithm that results recovers optimal convergence rates in singular problems, and that it captures boundary and internal layers in convection-dominated problems. Several important implementation issues are discussed. © 1997 John Wiley & Sons, Ltd.

[1]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[3]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[4]  Y. Kallinderis,et al.  Prismatic Grid Generation for Three-Dimensional Complex Geometries , 1993 .

[5]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[6]  Paul-Louis George,et al.  Mailleur bidimensionnel de Delaunay gouverné par une carte de métriques. Partie II: Applications , 1995 .

[7]  E. A. Dari,et al.  Mesh optimization: How to obtain good unstructured 3D finite element meshes with not-so-good mesh generators , 1994 .

[8]  Claes Johnson,et al.  Adaptive finite element methods for diffusion and convection problems , 1990 .

[9]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[10]  N. Weatherill,et al.  Unstructured grid generation using iterative point insertion and local reconnection , 1995 .

[11]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[12]  Abdellatif Agouzal,et al.  Une méthode d'éléments finis hybrides en décomposition de domaines , 1995 .

[13]  I. Babuška,et al.  Direct and inverse error estimates for finite elements with mesh refinements , 1979 .

[14]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[15]  E. F. D'Azevedo,et al.  On optimal triangular meshes for minimizing the gradient error , 1991 .

[16]  Boujemâa Achchab Estimations d'erreur a posteriori, éléments finis mixtes hiérarchiques, méthodes de stabilisation et méthodes multiniveaux , 1995 .

[17]  Juhani Pitkäranta,et al.  Boundary subspaces for the finite element method with Lagrange multipliers , 1979 .

[18]  Dimitri J. Mavriplis,et al.  Adaptive mesh generation for viscous flows using delaunay triangulation , 1990 .

[19]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[20]  Gustavo C. Buscaglia,et al.  OPTIMIZATION STRATEGIES IN UNSTRUCTURED MESH GENERATION , 1996 .

[21]  Jean-Yves Trépanier,et al.  An algorithm for the optimization of directionally stretched triangulations , 1994 .

[22]  David L. Marcum,et al.  Adaptive unstructured grid generation for viscous flow applications , 1995 .

[23]  Paul-Louis George,et al.  Optimization of Tetrahedral Meshes , 1995 .

[24]  R. B. Simpson,et al.  On optimal interpolation triangle incidences , 1989 .

[25]  Michal Křížek,et al.  On semiregular families of triangulations and linear interpolation , 1991 .

[26]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .

[27]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[28]  Frédéric Hecht,et al.  New Progress in Anisotropic Grid Adaptation for Inviscid and Viscous Flows Simulations , 1995 .