Minimum reconstruction error in feature-specific imaging

We describe theoretical and experimental results for a new class of optimal features for feature-specific imaging (FSI). In this paper, we theoretically solve the reconstruction problem without noise, and find a more general solution than principle component analysis (PCA). We present a generalized framework to find FSI projection matrices. Using Stochastic Tunneling, we find an optimal solution in the presence of noise and under an energy conservation constraint. We also show that a non-negativity requirement does not significantly reduce system performance. Finally, we propose an experimental system for FSI using a polarization-based optical pipeline processor.