Review: the human cutaneous microflora and factors controlling colonisation

The human skin is an unusual habitat for microorganisms in that it is open to contamination from the environment and yet is largely unsuitable for microbial colonisation, unlike mucosal surfaces. The normal microflora of human skin consists of resident colonising species capable of maintaining a viable, reproducing population on the skin and transient contaminating species that cannot sustain growth in the cutaneous environment. The structure of the skin and physiological factors such as hydration, pH, O2 and growth substrates determine the density and diversity of colonisation. Ecological stability is maintained by interactions between the host and the microflora, and between microbial species, and the relative importance of these factors varies between individuals at equivalent sites. The distribution of skin appendages at different sites on the body determines the prevailing environmental conditions, which in turn affects the density and diversity of the microflora. Microbial colonisation is not only restricted to the surface of the skin and there are substantial populations associated with the skin appendages, in particular sebaceous follicles. The aim of this article is to review the factors which determine the composition of the skin microflora under normal conditions and assess their relative importance.

[1]  K. T. Holland,et al.  The effects of lipid extraction on the immunomodulatory activity of Malassezia species in vitro. , 2000, Medical mycology.

[2]  F. Götz,et al.  Staphylococcal lipases: biochemical and molecular characterization. , 2000, Biochimie.

[3]  W. Noble OBSERVATIONS ON THE SURFACE FLORA OF THE SKIN AND ON THE SKIN pH , 1968, The British journal of dermatology.

[4]  J. Simon,et al.  Adhesion molecules CD11a, CD18, and ICAM-1 on human epidermal Langerhans cells serve a functional role in the activation of alloreactive T cells. , 1991, The Journal of investigative dermatology.

[5]  J. Leyden,et al.  Analysis of cellular components, biochemical reactions, and habitat of human cutaneous lipophilic diphtheroids. , 1985, The Journal of investigative dermatology.

[6]  D. A. Ferguson,et al.  Nutritional requirements of anaerobic coryneforms , 1978, Journal of bacteriology.

[7]  J. Schierholz,et al.  Implant infections: a haven for opportunistic bacteria. , 2001, The Journal of hospital infection.

[8]  E. Ingham,et al.  Propionibacterium acnes - friend or foe? , 1994 .

[9]  K. Heeg,et al.  Bacterial DNA as immune cell activator. , 1998, Trends in microbiology.

[10]  J. Bos,et al.  The skin immune system Its cellular constituents and their interactions. , 1986, Immunology today.

[11]  H. Hayashi,et al.  Adaptational change in proline and water content of Staphylococcus aureus after alteration of environmental salt concentration , 1978, Applied and environmental microbiology.

[12]  T. Yamagishi,et al.  Correlation between Propionibacterium acnes Biotypes, Lipase Activity and Rash Degree in Acne Patients , 2000, The Journal of dermatology.

[13]  J. Leeming,et al.  Improved methods for isolation and enumeration of Malassezia furfur from human skin , 1987, Journal of clinical microbiology.

[14]  H. Ogawa,et al.  Isolation and characterization of human skin lysozyme. , 1971, The Journal of investigative dermatology.

[15]  J. Schröder Epithelial antimicrobial peptides: innate local host response elements , 1999, Cellular and Molecular Life Sciences CMLS.

[16]  S. Shimada,et al.  The skin as an immunologic organ A tribute to Marion B. Sulzberger. , 1985, Journal of the American Academy of Dermatology.

[17]  R. Medzhitov,et al.  Innate immune recognition: mechanisms and pathways , 2000, Immunological reviews.

[18]  T. C. Hughes,et al.  The demonstration of bacteria on and within the stratum corneum using scanning electron microscopy , 1980, The British journal of dermatology.

[19]  K. T. Holland,et al.  Inhibitors produced by propionibacteria and their possible roles in the ecology of skin bacteria , 1980 .

[20]  J. Cove,et al.  Effects of oxygen concentration on biomass production, maximum specific growth rate and extracellular enzyme production by three species of cutaneous propionibacteria grown in continuous culture. , 1981, Journal of general microbiology.

[21]  J. Kleňha,et al.  Lysozyme in mouse and human skin. , 1967, The Journal of investigative dermatology.

[22]  W. Cunliffe,et al.  Antibodies to P. acnes and P. acnes exocellular enzymes in the normal population at various ages and in patients with acne vulgaris , 1987, The British journal of dermatology.

[23]  W. Noble,et al.  Application of computer taxonomic techniques to the study of cutaneous propionibacteria and skin-surface lipid , 2004, Archives of Dermatological Research.

[24]  H. Ogawa,et al.  Immunochemical studies on the human skin lysozyme. , 1972, The Journal of investigative dermatology.

[25]  M. Zasloff,et al.  Expression of natural peptide antibiotics in human skin , 1997, The Lancet.

[26]  Holland Db,et al.  Skin surface and open comedone pH in acne patients. , 1983 .

[27]  E. Stackebrandt,et al.  Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. , 1995, International journal of systematic bacteriology.

[28]  W. Kloos,et al.  Amino acid requirements of staphylococci isolated from human skin. , 1975, Canadian journal of microbiology.

[29]  W. Cunliffe,et al.  IgG subclasses specific to Staphylococcus epidermidis and Propionibacterium acnes in patients with acne vulgaris , 1997, The British journal of dermatology.

[30]  J. Gutteridge,et al.  The antibacterial effect of water-soluble compounds from autoxidising linolenic acid. , 1976, Journal of medical microbiology.

[31]  J. Faergemann,et al.  Age incidence of Pityrosporum orbiculare on human skin. , 1980, Acta dermato-venereologica.

[32]  E. Ingham,et al.  Propionibacterium acnes and inflammation in acne; P. acnes has T‐cell mitogenic activity , 2002, The British journal of dermatology.

[33]  T. Kupper,et al.  The activated keratinocyte: a model for inducible cytokine production by non-bone marrow-derived cells in cutaneous inflammatory and immune responses. , 1990, The Journal of investigative dermatology.

[34]  W. Lee,et al.  Comparative studies of porphyrin production in Propionibacterium acnes and Propionibacterium granulosum , 1978, Journal of bacteriology.

[35]  K. T. Holland,et al.  The distribution and ecology of Malassezia furfur and cutaneous bacteria on human skin. , 1989, The Journal of applied bacteriology.

[36]  K. T. Holland,et al.  Delayed hypersensitivity to Propionibacterium acnes in patients with severe nodular acne and acne fulminans. , 1994, Dermatology.

[37]  M. Katsumata,et al.  Immunohistochemical Study of Lysozyme in Human Apocrine Glands , 1990, The Journal of dermatology.

[38]  Domenico Romeo,et al.  Cathelicidins: a novel protein family with a common proregion and a variable C‐terminal antimicrobial domain , 1995, FEBS letters.

[39]  B. Marshall,et al.  Tolerance of bacteria to high concentrations of NaCl and glycerol in the growth medium. , 1971, Applied microbiology.

[40]  A. Kligman,et al.  A new method for the quantitative investigation of cutaneous bacteria. , 1965, The Journal of investigative dermatology.

[41]  K. Holland,et al.  The cutaneous propionibacteria. , 2002 .

[42]  M. Rupp,et al.  Coagulase-negative staphylococci: pathogens associated with medical progress. , 1994, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[43]  S. Akira,et al.  A Toll-like receptor recognizes bacterial DNA , 2000, Nature.

[44]  T. Sternberg,et al.  Levels of antibody to Staphylococcus epidermidis in patients with acne vulgaris. , 1965, Archives of dermatology.

[45]  T. Sternberg,et al.  Corynebacterium acnes. Presence of complement fixing antibodies to corynebacterium acnes in the sera of patients with acne vulgaris. , 1966, Archives of dermatology.

[46]  W. Noble,et al.  Microbiology of Human Skin , 1974 .

[47]  W. Noble,et al.  Microcolony size of microbes on human skin. , 1973, Journal of medical microbiology.

[48]  J. Kabara Structure-function relationships of surfactants as antimicrobial agents , 1978 .

[49]  J. Naidoo Effect of pH on inhibition of plasmid-carrying cultures of Staphylococcus aureus by lipids. , 1981, Journal of general microbiology.

[50]  C. Papavassilis,et al.  Growth requirements and nitrogen metabolism of Malassezia furfur , 1998, Archives of Dermatological Research.

[51]  A. Aderem,et al.  Toll-like receptors in the induction of the innate immune response , 2000, Nature.

[52]  H. Shinefield,et al.  Antimicrobial activity of sphingosines. , 1992, The Journal of investigative dermatology.

[53]  J. Schröder,et al.  Human beta-defensin-2. , 1999, The international journal of biochemistry & cell biology.

[54]  E. Bergogne-Bérézin,et al.  Opportunistic nosocomial multiply resistant bacterial infections--their treatment and prevention. , 1993, The Journal of antimicrobial chemotherapy.

[55]  A. Mor,et al.  Peptides as weapons against microorganisms in the chemical defense system of vertebrates. , 1995, Annual review of microbiology.

[56]  W. Jurecka,et al.  Immunoglobulins coat microorganisms of skin surface: a comparative immunohistochemical and ultrastructural study of cutaneous and oral microbial symbionts. , 1991, The Journal of investigative dermatology.

[57]  G. Bishop,et al.  CpG motifs in bacterial DNA trigger direct B-cell activation , 1995, Nature.

[58]  H. Maibach,et al.  Correlation of human in vivo and in vitro cutaneous antimicrobial factors. , 1975, The Journal of infectious diseases.

[59]  K. T. Holland,et al.  The microbial ecology of pilosebaceous units isolated from human skin. , 1984, Journal of general microbiology.

[60]  E. Ingham,et al.  Humoral responses to Malassezia furfur serovars A, B and C in normal individuals of various ages , 1992, The British journal of dermatology.

[61]  S. White,et al.  Structure, function, and membrane integration of defensins. , 1995, Current opinion in structural biology.

[62]  T. Ushijima,et al.  Acetic, propionic, and oleic acid as the possible factors influencing the predominant residence of some species of Propionibacterium and coagulase-negative Staphylococcus on normal human skin. , 1984, Canadian journal of microbiology.

[63]  T. Melø,et al.  Photodestruction of Propionibacterium acnes Porphyrins , 1985, Zeitschrift fur Naturforschung. Section C, Biosciences.

[64]  J. Faergemann Antibodies to Pityrosporum orbiculare in patients with tinea versicolor and controls of various ages. , 1983, The Journal of investigative dermatology.

[65]  R. F. Smith Characterization of human cutaneous lipophilic diphtheroids. , 1969, Journal of general microbiology.

[66]  K. T. Holland,et al.  Development of cutaneous microflora in premature neonates. , 1992, Archives of disease in childhood.

[67]  J. Leyden,et al.  Pathogenic JK group corynebacteria and their similarity to human cutaneous lipophilic diphtheroids. , 1985, The Journal of infectious diseases.

[68]  A. Johnsson,et al.  AN ACTION SPECTRUM FOR BLUE AND NEAR ULTRAVIOLET IN ACTIVATION OF Propionibacterium acnes; WITH EMPHASIS ON A POSSIBLE PORPHYRIN PHOTOSENSITIZATION , 1986, Photochemistry and photobiology.

[69]  K. T. Holland,et al.  Growth of cutaneous propionibacteria on synthetic medium; growth yields and exoenzyme production. , 1979, The Journal of applied bacteriology.

[70]  S. Mashiko,et al.  Singlet Oxygen (1Δg) Generation from Coproporphyrin inPropionibacterium acneson Irradiation , 1996 .

[71]  J. Leyden,et al.  Age-related changes in the resident bacterial flora of the human face. , 1975, The Journal of investigative dermatology.

[72]  W. Kloos,et al.  Amino Acid and Vitamin Requirements of Micrococcus Species Isolated from Human Skin , 1975 .

[73]  E. Christophers,et al.  Antileukoprotease in human skin: an antibiotic peptide constitutively produced by keratinocytes. , 1998, Biochemical and biophysical research communications.

[74]  K. T. Holland,et al.  The effect of dilution rate and pH on biomass and proteinase production by Micrococcus sedentarius grown in continuous culture. , 1992, The Journal of applied bacteriology.

[75]  C. Futsaether,et al.  Porphyrin sensitization and intracellular calcium changes in the prokaryote Propionibacterium acnes. , 1997, Journal of photochemistry and photobiology. B, Biology.

[76]  P. Heczko,et al.  Differential susceptibility of Propionibacterium acnes, P. granulosum and P. avidum to free fatty acids. , 1978, The Journal of investigative dermatology.

[77]  B. Kjeldstad DIFFERENT PHOTOINACTIVATION MECHANISMS IN Propionibacterium acnes FOR NEAR‐ULTRAVIOLET and VISIBLE LIGHT , 1987, Photochemistry and photobiology.

[78]  E. Guého,et al.  The diversity ofMalassezia yeasts confirmed by rRNA sequence and nuclear DNA comparisons , 2004, Antonie van Leeuwenhoek.

[79]  W. Cunliffe,et al.  Humoral immunity to Malassezia furfur serovars A, B and C in patients with pityriasis versicolor, seborrheic dermatitis and controls , 1994, Experimental dermatology.

[80]  R. Siebert,et al.  Expression profile of human defensins and antimicrobial proteins in oral tissues. , 2001, Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology.

[81]  K. T. Holland,et al.  Partial purification and characterization of lipase (EC 3.1.1.3) from Propionibacterium acnes. , 1981, Journal of general microbiology.

[82]  R. Hone,et al.  Changing pattern of Crohn's disease in Northern Ireland , 1988, British medical journal.

[83]  K. T. Holland,et al.  The cutaneous microbiology of normal human feet. , 1987, The Journal of applied bacteriology.

[84]  K. T. Holland,et al.  Identification of a second lipase gene, gehD, in Staphylococcus epidermidis: comparison of sequence with those of other staphylococcal lipases. , 2000, Microbiology.

[85]  J. Schröder,et al.  Isolation and Characterization of Human β-Defensin-3, a Novel Human Inducible Peptide Antibiotic* , 2001, The Journal of Biological Chemistry.

[86]  K. T. Holland,et al.  Cellular immunity to P. acnes in the normal population and patients with acne vulgaris , 1978, The British journal of dermatology.

[87]  W. Kloos,et al.  Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. , 1975, Applied microbiology.

[88]  J. Schröder,et al.  A peptide antibiotic from human skin , 1997, Nature.

[89]  L. Randall,et al.  Export of protein in bacteria , 1984, Microbiological reviews.

[90]  M. Stanley,et al.  Epidermal keratinocyte self-renewal is dependent upon dermal integrity. , 1992, The Journal of investigative dermatology.

[91]  Antony Rodriguez,et al.  The 18‐wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense , 1997, The EMBO journal.

[92]  T. Melø,et al.  Fluorescence from pilosebaceous follicles , 2004, Archives of Dermatological Research.

[93]  P. Marconi,et al.  Serum and skin lysozyme activity in non-diabetic and diabetic subjects , 1978, Archives of Dermatological Research.

[94]  R. Zbinden,et al.  Severe infections caused by Propionibacterium acnes: an underestimated pathogen in late postoperative infections. , 1996, The Yale journal of biology and medicine.

[95]  O. Vesterberg,et al.  Studies on extracellular PROTEINS FROM Staphylococcus aureus. I. Separation and characterization of enzymes and toxins by isoelectric focusing. , 1967, Biochimica et biophysica acta.

[96]  K. T. Holland,et al.  Effects of dilution rate on biomass and extracellular enzyme production by three species of cutaneous propionibacteria grown in continuous culture. , 1985, Journal of general microbiology.

[97]  R. Lacey,et al.  Sensitivity of staphylococci to fatty acids: novel inactivation of linolenic acid by serum. , 1981, Journal of medical microbiology.

[98]  H. Maibach,et al.  Survival of pathogenic microorganisms on human skin. , 1972, The Journal of investigative dermatology.

[99]  W. Roszkowski,et al.  Immunomodulation by propionibacteria. , 1985, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[100]  T. Bannerman,et al.  Update on clinical significance of coagulase-negative staphylococci , 1994, Clinical Microbiology Reviews.

[101]  J. Cove,et al.  The vitamin requirements of staphylococci isolated from human skin. , 1980, The Journal of applied bacteriology.

[102]  K. T. Holland,et al.  The follicular distribution and abundance of resident bacteria on human skin. , 1984, Journal of general microbiology.

[103]  K. McGinley,et al.  Corynebacterium acnes and other anaerobic diphtheroids from human skin. , 1974, Journal of medical microbiology.

[104]  W. Cunliffe,et al.  IgG subclasses in acne vulgaris , 1986, The British journal of dermatology.

[105]  P. Sohnle,et al.  Class‐specific antibodies in young and aged humans against organisms producing superficial fungal infections , 1983, The British journal of dermatology.

[106]  J. Meis,et al.  Induction of SLPI (ALP/HUSI-I) in epidermal keratinocytes. , 1998, The Journal of investigative dermatology.

[107]  C. Futsaether,et al.  Measurement of the intracellular pH of Propionibacterium acnes: comparison between the fluorescent probe BCECF and 31P-NMR spectroscopy. , 1993, Canadian journal of microbiology.

[108]  J. Leyden,et al.  Complement activation in acne vulgaris: in vitro studies with Propionibacterium acnes and Propionibacterium granulosum , 1978, Infection and immunity.

[109]  Nikolaus Blin,et al.  Dermcidin: a novel human antibiotic peptide secreted by sweat glands , 2001, Nature Immunology.

[110]  H. Wigzell,et al.  The Expression of the Gene Coding for the Antibacterial Peptide LL-37 Is Induced in Human Keratinocytes during Inflammatory Disorders* , 1997, The Journal of Biological Chemistry.

[111]  E. Christophers,et al.  Antileukoprotease in psoriatic scales. , 1993, The Journal of investigative dermatology.

[112]  H. Nagura,et al.  Identification of secretory immunoglobulin A in human sweat and sweat glands. , 1988, The Journal of investigative dermatology.

[113]  H. Shinefield,et al.  Topical sphingolipids in antisepsis and antifungal therapy , 1995, Clinical and experimental dermatology.

[114]  G. Steffens,et al.  Antibacterial activity of antileukoprotease , 1996, Infection and immunity.

[115]  B. A. Phillips,et al.  Coryneform Bacteria Producing Methane Thiol , 1976 .

[116]  R. F. Smith Fatty acid requirements of human cutaneous lipophilic corynebacteria. , 1970, Journal of general microbiology.

[117]  K. T. Holland,et al.  Correlations between human skin bacteria and skin lipids , 1984, The British journal of dermatology.

[118]  K. T. Holland,et al.  The microaerophily and photosensitivity of Propionibacterium acnes. , 1994, The Journal of applied bacteriology.

[119]  A. Kropec,et al.  Cross infections due to coagulase-negative staphylococci in high-risk patients. , 1995, Zentralblatt fur Bakteriologie : international journal of medical microbiology.

[120]  K. T. Holland,et al.  Studies of the extracellular proteolytic activity produced by Propionibacterium acnes. , 1983, The Journal of applied bacteriology.

[121]  S. M. Puhvel,et al.  Effect of fatty acids on the growth of Corynebacterium acnes in vitro. , 1970, The Journal of investigative dermatology.

[122]  A. G. Marr,et al.  THE REQUIREMENT OF FATTY ACIDS BY PITYROSPORUM OVALE. , 1963, Journal of general microbiology.

[123]  D. Herbert,et al.  The continuous culture of bacteria; a theoretical and experimental study. , 1956, Journal of general microbiology.

[124]  K. T. Holland,et al.  Intergeneric and intrageneric inhibition between strains of Propionibacterium acnes and micrococcaceae, particularly Staphylococcus epidermidis, isolated from normal skin and acne lesions. , 1979, Journal of medical microbiology.

[125]  J. Cove,et al.  The vitamin requirements of Staphylococcus cohnii. , 1983, The Journal of applied bacteriology.

[126]  A. Johnsson,et al.  Influence of pH on porphyrin production in Propionibacterium acnes , 2004, Archives of Dermatological Research.