Distance matrices and quadratic embedding of graphs

A connected graph is said to be of QE class if it admits  a quadratic embedding in a Hilbert space, or equivalently, if the distance matrix is conditionally negative definite. Several criteria for a graph to be of QE class are derived from the point of view of graph operations. For a quantitative criterion the QE constant is introduced and concrete examples are shown with explicit calculation. If the distance matrix admits a constant row sum, the QE constant coincides with the second largest eigenvalue of the distance matrix. The QE constants are determined for all graphs on $n$ vertices with $n\le5$, among which two are not of QE class.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  P. Hansen,et al.  Distance spectra of graphs: A survey , 2013 .

[3]  T. Hayden,et al.  METHODS FOR CONSTRUCTING DISTANCE MATRICES AND THE INVERSE EIGENVALUE PROBLEM , 1999 .

[4]  A. Householder,et al.  Discussion of a set of points in terms of their mutual distances , 1938 .

[5]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .

[6]  J. Modic,et al.  On Euclidean distance matrices of graphs , 2013 .

[7]  Gasper Jaklic,et al.  Euclidean graph distance matrices of generalizations of the star graph , 2014, Appl. Math. Comput..

[8]  A. Hora,et al.  Distance-Regular Graphs , 2007 .

[9]  Gasper Jaklic,et al.  On properties of cell matrices , 2010, Appl. Math. Comput..

[10]  N. Obata Markov product of positive definite kernels and applications to $Q$-matrices of graph products , 2011 .

[11]  R. Balaji,et al.  On Euclidean distance matrices , 2007 .

[12]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[13]  Peter J. Cameron,et al.  Graphs and matrices , 2004 .

[14]  Ante Graovac,et al.  On the distance spectrum of a cycle , 1985 .

[15]  A. Hora,et al.  Quantum Probability and Spectral Analysis of Graphs , 2007 .

[16]  Leo Liberti,et al.  Euclidean Distance Geometry and Applications , 2012, SIAM Rev..

[17]  T. Constantinescu,et al.  Positive definite kernels and lattice paths , 2005, math/0504029.

[18]  I. J. Schoenberg On Certain Metric Spaces Arising From Euclidean Spaces by a Change of Metric and Their Imbedding in Hilbert Space , 1937 .

[19]  Pawel J'oziak Conditionally strictly negative definite kernels , 2013, 1307.1778.

[20]  U. Haagerup An example of a non nuclearC*-algebra, which has the metric approximation property , 1978 .