7SK-BAF axis controls pervasive transcription at enhancers

[1]  J. McCann,et al.  KAP1 Recruitment of the 7SK snRNP Complex to Promoters Enables Transcription Elongation by RNA Polymerase II. , 2016, Molecular cell.

[2]  Howard Y. Chang,et al.  Unique features of long non-coding RNA biogenesis and function , 2015, Nature Reviews Genetics.

[3]  R. Roeder,et al.  RNA polymerase II–associated factor 1 regulates the release and phosphorylation of paused RNA polymerase II , 2015, Science.

[4]  中山 幸輝 A long noncoding RNA protects the heart from pathological hypertrophy , 2015 .

[5]  Alex P. Reynolds,et al.  Native Elongating Transcript Sequencing Reveals Human Transcriptional Activity at Nucleotide Resolution , 2015, Cell.

[6]  D. Fargo,et al.  Pausing of RNA polymerase II regulates mammalian developmental potential through control of signaling networks. , 2015, Molecular cell.

[7]  Qiangfeng Cliff Zhang,et al.  Systematic Discovery of Xist RNA Binding Proteins , 2015, Cell.

[8]  Charles Y. Lin,et al.  Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. , 2015, Molecular cell.

[9]  Thomas J. Ha,et al.  Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells , 2015, Science.

[10]  Howard Y. Chang,et al.  Structural imprints in vivo decode RNA regulatory mechanisms , 2015, Nature.

[11]  Howard Y. Chang,et al.  Dissecting noncoding and pathogen RNA–protein interactomes , 2015, RNA.

[12]  J. Lieb,et al.  What are super-enhancers? , 2014, Nature Genetics.

[13]  James E. Bradner,et al.  Convergent Transcription at Intragenic Super-Enhancers Targets AID-Initiated Genomic Instability , 2014, Cell.

[14]  Howard Y. Chang,et al.  RNA helicase DDX21 coordinates transcription and ribosomal RNA processing , 2014, Nature.

[15]  André L. Martins,et al.  Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers , 2014, Nature Genetics.

[16]  Boris Yamrom,et al.  The contribution of de novo coding mutations to autism spectrum disorder , 2014, Nature.

[17]  J. Lis,et al.  Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons , 2014, eLife.

[18]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[19]  Tatsunori B. Hashimoto,et al.  Discovery of non-directional and directional pioneer transcription factors by modeling DNase profile magnitude and shape , 2014, Nature Biotechnology.

[20]  M. Rosenfeld,et al.  Brd4 and JMJD6-Associated Anti-Pause Enhancers in Regulation of Transcriptional Pause Release , 2013, Cell.

[21]  J. McCann,et al.  Transcription factors mediate the enzymatic disassembly of promoter-bound 7SK snRNP to locally recruit P-TEFb for transcription elongation. , 2013, Cell reports.

[22]  J. Lis,et al.  Control of transcriptional elongation. , 2013, Annual review of genetics.

[23]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[24]  Stephen C. J. Parker,et al.  Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants , 2013, Proceedings of the National Academy of Sciences.

[25]  Patricia Grob,et al.  Structural insights into transcriptional repression by noncoding RNAs that bind to human Pol II. , 2013, Journal of molecular biology.

[26]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[27]  S. Dhanasekaran,et al.  The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex , 2013, Nature Genetics.

[28]  Paulo P. Amaral,et al.  The non-coding snRNA 7SK controls transcriptional termination, poising, and bidirectionality in embryonic stem cells , 2013, Genome Biology.

[29]  R. Shiekhattar,et al.  Long Noncoding RNAs Usher In a New Era in the Biology of Enhancers , 2013, Cell.

[30]  C. Glass,et al.  Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation , 2013, Nature.

[31]  C. Glass,et al.  Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription , 2013, Nature.

[32]  Charles Y. Lin,et al.  SR Proteins Collaborate with 7SK and Promoter-Associated Nascent RNA to Release Paused Polymerase , 2013, Cell.

[33]  G. Crabtree,et al.  Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy , 2013, Nature Genetics.

[34]  Hannah Stower Super enhancers , 2013, Nature Reviews Genetics.

[35]  David A. Orlando,et al.  Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes , 2013, Cell.

[36]  Howard Y. Chang,et al.  Long Noncoding RNAs: Cellular Address Codes in Development and Disease , 2013, Cell.

[37]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[38]  E. Furlong,et al.  Transcription factors: from enhancer binding to developmental control , 2012, Nature Reviews Genetics.

[39]  K. Weeks,et al.  The mechanisms of RNA SHAPE chemistry. , 2012, Journal of the American Chemical Society.

[40]  Qiang Zhou,et al.  RNA polymerase II elongation control. , 2012, Annual review of biochemistry.

[41]  Howard Y. Chang,et al.  Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. , 2011, Molecular cell.

[42]  Michael B. Eisen,et al.  Control of Embryonic Stem Cell Lineage Commitment by Core Promoter Factor, TAF3 , 2011, Cell.

[43]  Albert E. Almada,et al.  Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome , 2011, Proceedings of the National Academy of Sciences.

[44]  Ryan A. Flynn,et al.  A unique chromatin signature uncovers early developmental enhancers in humans , 2011, Nature.

[45]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[46]  J. Lis,et al.  CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. , 2010, Genes & development.

[47]  William B. Smith,et al.  Selective inhibition of BET bromodomains , 2010, Nature.

[48]  Howard Y. Chang,et al.  Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes , 2010, Science.

[49]  Alan D. Frankel,et al.  RNA-mediated displacement of an inhibitory snRNP complex activates transcription elongation , 2010, Nature Structural &Molecular Biology.

[50]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[51]  Christopher B. Burge,et al.  c-Myc Regulates Transcriptional Pause Release , 2010, Cell.

[52]  Clifford A. Meyer,et al.  Nucleosome Dynamics Define Transcriptional Enhancers , 2010, Nature Genetics.

[53]  P. Stadler,et al.  Evolution of 7SK RNA and its protein partners in metazoa. , 2009, Molecular biology and evolution.

[54]  Danny Reinberg,et al.  Histones: annotating chromatin. , 2009, Annual review of genetics.

[55]  B. Coulombe,et al.  LARP7 is a stable component of the 7SK snRNP while P-TEFb, HEXIM1 and hnRNP A1 are reversibly associated , 2008, Nucleic acids research.

[56]  G. L. Eliceiri,et al.  Intracellular distribution of low molecular weight RNA species in HeLa cells , 1980, The Journal of cell biology.

[57]  C. Mello,et al.  Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF Authors , 2015 .

[58]  Y. Zhu,et al.  RNA polymerase II elongation control. , 1998, Cold Spring Harbor symposia on quantitative biology.