Hybrid Approach for Classification using Support Vector Machine and Decision Tree

A hybrid system or hybrid intelligent system uses the approach of integrating different learning or decision-making models. Each learning model works in a different manner and exploits different set of features. Integrating different learning models gives better performance than the individual learning or decision-making models by reducing their individual limitations and exploiting their different mechanisms. In this paper, a hybrid approach of classification is proposed which attempts to utilize the advantages of both decision trees and SVM leading to better classification accuracy. Keywords—hybrid, support vector machine, decision tree, ID3, C4.5

[1]  Philip J. Stone,et al.  Experiments in induction , 1966 .

[2]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[3]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[4]  Ron Kohavi,et al.  Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid , 1996, KDD.

[5]  Ajith Abraham,et al.  Hybrid Information Systems, First International Workshop on Hybrid Intelligent Systems, Adelaide, Australia, December 11-12, 2001, Proceedings , 2002, HIS.

[6]  Paul E. Utgoff,et al.  Perceptron Trees : A Case Study in ybrid Concept epresentations , 1999 .

[7]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[8]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[9]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[10]  Evangelos Simoudis,et al.  Mining business databases , 1996, CACM.

[11]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[12]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[13]  Martin Brown,et al.  Network Performance Assessment for Neurofuzzy Data Modelling , 1997, IDA.

[14]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[15]  Ajith Abraham,et al.  Hybrid information systems , 2002 .

[16]  J. Ross Quinlan,et al.  Simplifying decision trees , 1987, Int. J. Hum. Comput. Stud..

[17]  M. Friedman A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings , 1940 .

[18]  J. Ross Quinlan,et al.  Improved Use of Continuous Attributes in C4.5 , 1996, J. Artif. Intell. Res..

[19]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[20]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[21]  S. Siegel,et al.  Nonparametric Statistics for the Behavioral Sciences , 2022, The SAGE Encyclopedia of Research Design.

[22]  R. Olshen,et al.  Almost surely consistent nonparametric regression from recursive partitioning schemes , 1984 .