A numerical study of the contributions of dust source regions to the global dust budget

Abstract Contributions of the nine potential dust source regions (North and South Africa, the Arabian Peninsula, Central Asia, eastern and western China, North and South America, and Australia) to the global dust budget are investigated with a global dust transport model. A six-year simulation (1990 to 1995) indicates that the greatest contributor to the global dust budget is found to be North Africa (the Sahara Desert), which accounts for 58% of the total global dust emission and 62% of the total global dust load in the atmosphere. Australian dust dominates the southern hemisphere. The dust emission and atmospheric dust load originating from East Asia (eastern and western China) are estimated to be 214 Tg yr− 1 and 1.1 Tg, respectively, which are 11% and 6% of the total global dust emission and dust load. Dust from East Asia dominates the atmospheric load over China and Mongolia (about 70%), Korea (60%), Japan (50%), and the North Pacific Ocean (40%). The contribution of dust originating from regions other than East Asia to the dust load over these East Asian countries and the North Pacific Ocean cannot be ignored. The simulated total dust deposition flux on Greenland suggests a possible overestimation of the Saharan dust and an underestimation of the East Asian dust in the Arctic region, which may be a common problem with global dust transport models. Possible reasons for the underestimation of the East Asian dust are discussed.

[1]  Y. Shao Physics and Modelling of Wind Erosion , 2001 .

[2]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[3]  G. Bergametti,et al.  Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas , 1999 .

[4]  Irina N. Sokolik,et al.  Direct radiative forcing by anthropogenic airborne mineral aerosols , 1996, Nature.

[5]  Gunnar Myhre,et al.  Global sensitivity experiments of the radiative forcing due to mineral aerosols , 2001 .

[6]  J. Key,et al.  Sensitivity Experiments of Direct Radiative Forcing Caused by Mineral Dust Simulated with a Chemical Transport Model , 2005 .

[7]  A. Henderson‐sellers,et al.  A global archive of land cover and soils data for use in general circulation climate models , 1985 .

[8]  Raupach,et al.  A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region , 1996 .

[9]  T. Morishita,et al.  Transport of carbon-bearing dusts from Iraq to Japan during Iraq's War , 2004 .

[10]  Paul Ginoux,et al.  Case study of a Chinese dust plume reaching the French Alps , 2003 .

[11]  J. Perlwitz,et al.  Surface radiative forcing by soil dust aerosols and the hydrologic cycle , 2004 .

[12]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[13]  Nobuo Sugimoto,et al.  A high-resolution numerical study of the Asian dust storms of April 2001 , 2003 .

[14]  Robert S. Webb,et al.  Global Soil Texture and Derived Water-Holding Capacities (Webb et al.) , 2000 .

[15]  G. Mellor,et al.  A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers. , 1974 .

[16]  N. Mahowald,et al.  Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport, and distribution , 2003 .

[17]  M. Noguer,et al.  Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change , 2002 .

[18]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols , 1980 .

[19]  Y. Shao,et al.  A simple expression for wind erosion threshold friction velocity , 2000 .

[20]  M. Mikami,et al.  Regional Difference in the Characteristic of Dust Event in East Asia: Relationship among Dust Outbreak, Surface Wind, and Land Surface Condition , 2005 .

[21]  柴田 清孝,et al.  A Simulation of Troposphere, Stratosphere and Mesosphere With an MRI/JMA98 GCM. , 1999 .

[22]  Long-Range Transport of Saharan Dust to East Asia Observed with Lidars , 2005 .

[23]  C. Zender,et al.  Quantifying mineral dust mass budgets:Terminology, constraints, and current estimates , 2004 .

[24]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[25]  清孝 柴田,et al.  大気大循環モデルMRI/JMA98と結合した全球対流圏エーロゾル化学輸送モデル MASINGAR , 2003 .

[26]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[27]  Francis E. Grousset,et al.  Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP, Greenland , 2002 .

[28]  Akihiro Uchiyama,et al.  Possible transcontinental dust transport from North Africa and the Middle East to East Asia , 2005 .

[29]  J. Prospero,et al.  Long-Range Atmospheric Transport of Soil Dust from Asia to the Tropical North Pacific: Temporal Variability , 1980, Science.

[30]  P. Valdes,et al.  The modern dust cycle: Comparison of model results with observations and study of sensitivities , 2002 .

[31]  James H. Martin,et al.  Iron still comes from above , 1991, Nature.

[32]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.

[33]  Zifa Wang,et al.  Meteorological Characteristics and Dust Distribution of the Tarim Basin Simulated by the Nesting RAMS/CFORS Dust Model , 2005 .

[34]  正人 杉,et al.  大気大循環モデル (MRI/JMA98) による対流圏、成層圏、中間圏のシミュレーション , 1999 .

[35]  J. Lelieveld,et al.  Role of mineral aerosol as a reactive surface in the global troposphere , 1996 .

[36]  O. Torres,et al.  Incorporating the effect of small‐scale circulations upon dust emission in an atmospheric general circulation model , 2004 .

[37]  Andrew A. Lacis,et al.  Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol , 1996 .

[38]  Masaru Chiba,et al.  Global Simulation of Dust Aerosol with a Chemical Transport Model, MASINGAR( ADEC-Aeolian Dust Experiment on Climate Impact-) , 2005 .

[39]  M. Kanamitsu,et al.  NCEP–DOE AMIP-II Reanalysis (R-2) , 2002 .

[40]  David Archer,et al.  What caused the glacial/interglacial atmospheric pCO2 cycles? , 2000 .

[41]  A. Arakawa,et al.  Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I , 1974 .

[42]  G. Stenchikov,et al.  The impact of aerosols on solar ultraviolet radiation and photochemical smog. , 1997, Science.

[43]  T. Cokacar,et al.  Optical properties of mineral dust outbreaks over the northeastern Mediterranean , 2003 .

[44]  C. Zender,et al.  Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology , 2003 .

[45]  R. Martin,et al.  Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols , 2003 .

[46]  Joshua P. Hacker,et al.  Long‐range transport of Asian dust to the Lower Fraser Valley, British Columbia, Canada , 2001 .

[47]  David Newman,et al.  Spatial heterogeneity in aeolian erodibility: Uniform, topographic, geomorphic, and hydrologic hypotheses , 2003 .

[48]  I. Prentice,et al.  Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions , 2002 .

[49]  Nick Middleton,et al.  The changing frequency of dust storms through time , 1992 .

[50]  K. Pye Aeolian dust and dust deposits , 1987 .

[51]  P. R. Owen,et al.  Saltation of uniform grains in air , 1964, Journal of Fluid Mechanics.

[52]  William L. Chameides,et al.  Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model , 1986 .

[53]  Mian Chin,et al.  Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation , 2004, Environ. Model. Softw..

[54]  M. Heimann,et al.  Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study , 2002 .

[55]  J. Prospero Long‐term measurements of the transport of African mineral dust to the southeastern United States: Implications for regional air quality , 1999 .

[56]  Robert Frouin,et al.  Asian Dust Events of April 1998 , 2001 .

[57]  Francis E. Grousset,et al.  Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP) , 2003 .

[58]  Teruo Aoki,et al.  Effects of snow physical parameters on shortwave broadband albedos , 2003 .

[59]  Francis E. Grousset,et al.  Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core , 1997 .

[60]  J. Townshend,et al.  NDVI-derived land cover classifications at a global scale , 1994 .