Static and dynamic structural-sensitivity derivative calculations in the finite-element-based Engineering Analysis Language (EAL) system

The implementation of static and dynamic structural-sensitivity derivative calculations in a general purpose, finite-element computer program denoted the Engineering Analysis Language (EAL) System is described. Derivatives are calculated with respect to structural parameters, specifically, member sectional properties including thicknesses, cross-sectional areas, and moments of inertia. Derivatives are obtained for displacements, stresses, vibration frequencies and mode shapes, and buckling loads and mode shapes. Three methods for calculating derivatives are implemented (analytical, semianalytical, and finite differences), and comparisons of computer time and accuracy are made. Results are presented for four examples: a swept wing, a box beam, a stiffened cylinder with a cutout, and a space radiometer-antenna truss.