Hydrated Electron Dynamics: From Clusters to Bulk

The electronic relaxation dynamics of size-selected (H2O)n–/(D2O)n[25 ≤ n ≤ 50] clusters have been studied with time-resolved photoelectron imaging. The excess electron (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(e_{c}^{-}\) \end{document}) was excited through the \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(e_{c}^{-}(p){\leftarrow}e_{c}^{-}(s)\) \end{document} transition with an ultrafast laser pulse, with subsequent evolution of the excited state monitored with photodetachment and photoelectron imaging. All clusters exhibited p-state population decay with concomitant s-state repopulation (internal conversion) on time scales ranging from 180 to 130 femtoseconds for (H2O)n– and 400 to 225 femtoseconds for (D2O)n–; the lifetimes decrease with increasing cluster sizes. Our results support the “nonadiabatic relaxation” mechanism for the bulk hydrated electron (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(e_{aq}^{-}\) \end{document}), which invokes a 50-femtosecond \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(e_{aq}^{-}(p){\rightarrow}e_{aq}^{-}(s^{{\dagger}})\) \end{document} internal conversion lifetime.

[1]  M. Parrinello,et al.  First-principles molecular-dynamics simulations of a hydrated electron in normal and supercritical water. , 2003, Physical review letters.

[2]  P. Barbara,et al.  Ultrafast Transient Absorption Spectroscopy of the Solvated Electron in Water , 1994 .

[3]  Marvin Johnson,et al.  Photoelectron spectroscopy of the `missing' hydrated electron clusters (H2O)−n, n=3, 5, 8 and 9: Isomers and continuity with the dominant clusters n=6, 7 and ⩾11 , 1998 .

[4]  Albert Stolow,et al.  Femtosecond time-resolved photoelectron spectroscopy. , 2004, Chemical reviews.

[5]  J. Jortner,et al.  Cooling of large molecules below 1 K and He clusters formation , 2000 .

[6]  U. Landman,et al.  Electron localization in water clusters. II. Surface and internal states , 1988 .

[7]  H. Haberland,et al.  Negatively Charged Water Clusters, or the First Observation of Free Hydrated Electrons , 1981 .

[8]  Arshad Khan Solvated electron in (H2O)20− and (H2O)21− clusters: A theoretical study , 2003 .

[9]  Marvin Johnson,et al.  Infrared spectroscopy of negatively charged water clusters: Evidence for a linear network , 1999 .

[10]  David H. Parker,et al.  Velocity map imaging of ions and electrons using electrostatic lenses: Application in photoelectron and photofragment ion imaging of molecular oxygen , 1997 .

[11]  J. V. Coe Fundamental properties of bulk water from cluster ion data , 2001 .

[12]  Andrius Baltuška,et al.  Hydrated-electron population dynamics , 2004 .

[13]  H. W. Sarkas,et al.  Photoelectron spectroscopy of hydrated electron cluster anions, (H2O)−n=2–69 , 1990 .

[14]  P. Barbara,et al.  Detailed Investigation of the Femtosecond Pump−Probe Spectroscopy of the Hydrated Electron , 1998 .

[15]  P. Rossky,et al.  The hydrated electron: quantum simulation of structure, spectroscopy, and dynamics , 1988 .

[16]  Alison V. Davis,et al.  Excited-state detachment dynamics and rotational coherences of C2− via time-resolved photoelectron imaging , 2003 .

[17]  P. Vöhringer,et al.  Ultrafast relaxation dynamics of solvated electrons in water , 1998 .

[18]  Marvin Johnson,et al.  Observation of resonant two-photon photodetachment of water cluster anions via femtosecond photoelectron spectroscopy , 2001 .

[19]  Benjamin J. Schwartz,et al.  Aqueous solvation dynamics with a quantum mechanical Solute: Computer simulation studies of the photoexcited hydrated electron , 1994 .

[20]  A. Laubereau,et al.  Femtosecond solvation dynamics of solvated electrons in neat water , 2000 .

[21]  Marvin Johnson,et al.  Electronic absorption spectra of size-selected hydrated electron clusters: (H2O)n−, n=6–50 , 1997 .

[22]  D. Bartels Moment analysis of hydrated electron cluster spectra: Surface or internal states? , 2001 .

[23]  L. Kevan,et al.  Solvated electron structure in glassy matrixes , 1981 .

[24]  R. Mathies,et al.  Structure of the aqueous solvated electron from resonance Raman spectroscopy: lessons from isotopic mixtures. , 2003, Journal of the American Chemical Society.

[25]  J. Boag,et al.  ABSORPTION SPECTRUM OF THE HYDRATED ELECTRON IN WATER AND IN AQUEOUS SOLUTIONS , 1962 .

[26]  Martin,et al.  Excess electrons in liquid water: First evidence of a prehydrated state with femtosecond lifetime. , 1987, Physical review letters.