Return to Comet Tempel 1: Overview of Stardust-NExT results

[1]  H. Melosh,et al.  Deep Impact: Excavating Comet Tempel 1 , 2005, Science.

[2]  D. Brownlee,et al.  The dust mass distribution of Comet 81P/Wild 2 , 2004 .

[3]  R. Vasundhara Investigations of the pre-Deep Impact morphology of the dust coma of Comet Tempel-1 , 2009 .

[4]  M. Belton,et al.  Fluidization and multiphase transport of particulate cometary material as an explanation of the smooth terrains and repetitive outbursts on 9P/Tempel 1 , 2009 .

[5]  K. P. Klaasen,et al.  Exposed Water Ice Deposits on the Surface of Comet 9P/Tempel 1 , 2006, Science.

[6]  M. Belton Cometary activity, active areas, and a mechanism for collimated outflows on 1P, 9P, 19P, and 81P , 2010 .

[7]  M. Belton,et al.  An updated rotation model for Comet 9P/Tempel 1 , 2013 .

[8]  D. Brownlee,et al.  Surface of Young Jupiter Family Comet 81P/Wild 2: View from the Stardust Spacecraft , 2004, Science.

[9]  Karen J. Meech,et al.  Deep Impact photometry of Comet 9p/Tempel 1 , 2007 .

[10]  D. Brownlee,et al.  Dust Flux Monitor Instrument for the Stardust mission to comet Wild 2 , 2003 .

[11]  T. Farnham Coma Morphology of Jupiter Family Comets , 2009 .

[12]  J. Richardson Cratering saturation and equilibrium: A new model looks at an old problem , 2009 .

[13]  Thomas C. Duxbury,et al.  Stardust Imaging Camera , 2003 .

[14]  Y. Langevin,et al.  Composition of comet Halley dust particles from Vega observations , 1986 .

[15]  The History and Dynamics of Comet 9P/Tempel 1 , 2005 .

[16]  Brian Carcich,et al.  A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1's gravity, mass, and density , 2007 .

[17]  F. R. Krueger,et al.  Composition of comet Halley dust particles from Giotto observations , 1986 .

[18]  W. Delamere,et al.  The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The “talps” or “layered pile” model , 2007 .

[19]  Daniel C. Boice,et al.  The morphology and surface processes of Comet 19/P Borrelly , 2004 .

[20]  M. Belton,et al.  Cometary cryo-volcanism: Source regions and a model for the UT 2005 June 14 and other mini-outbursts on Comet 9P/Tempel 1 , 2008 .

[21]  R. Sagdeev,et al.  The dust coma of comet P/Halley: measurements on the Vega-1 and Vega-2 spacecraft , 1988 .

[22]  D. Brownlee,et al.  Release and fragmentation of aggregates to produce heterogeneous, lumpy coma streams , 2004 .

[23]  K. J. Meech,et al.  Spitzer Spectral Observations of the Deep Impact Ejecta , 2006, Science.

[24]  S. Hasegawa,et al.  Deep Impact: Observations from a Worldwide Earth-Based Campaign , 2005, Science.

[25]  H. Melosh,et al.  EPOXI at Comet Hartley 2 , 2011, Science.

[26]  R. Kramm,et al.  Surface features on the nucleus of comet Halley , 1988, Nature.

[27]  L. Lara,et al.  A numerical model of cometary dust coma structures Application to comet 9P/Tempel 1 , 2010 .

[28]  Harold F. Levison,et al.  Dynamical evolution of ecliptic comets , 2004 .

[29]  F. R. Krueger,et al.  The Cometary and Interstellar Dust Analyzer at Comet 81P/Wild 2 , 2004, Science.

[30]  Peter H. Schultz,et al.  The shape, topography, and geology of Tempel 1 from Deep Impact observations , 2007 .

[31]  Neil McBride,et al.  Dust Measurements in the Coma of Comet 81P/Wild 2 by the Dust Flux Monitor Instrument , 2004, Science.

[32]  Donald B. Hampton,et al.  Deep Impact, Stardust-NExT and the behavior of Comet 9P/Tempel 1 from 1997 to 2010 , 2011 .

[33]  P. Schultz,et al.  The Deep Impact oblique impact cratering experiment , 2007 .

[34]  H. Melosh,et al.  The origin of pits on 9P/Tempel 1 and the geologic signature of outbursts in Stardust-NExT images , 2013 .

[35]  U. Fink,et al.  The Coma of Comet 9P/Tempel 1 , 2005 .

[36]  F. R. Krueger,et al.  Cometary and Interstellar Dust Analyzer for comet Wild 2 , 2003 .

[37]  Wolfgang Werther,et al.  Assignment of quinone derivatives as the main compound class composing 'interstellar' grains based on both polarity ions detected by the 'Cometary and Interstellar Dust Analyser' (CIDA) onboard the spacecraft STARDUST. , 2004, Rapid communications in mass spectrometry : RCM.

[38]  D. Brownlee,et al.  The nucleus of Comet 9P/Tempel 1: Shape and geology from two flybys , 2013 .

[39]  H. Melosh,et al.  An examination of the Deep Impact collision site on Comet Tempel 1 via Stardust-NExT: Placing further constraints on cometary surface properties , 2013 .

[40]  Nicolas Thomas,et al.  Imaging borrelly : DS1/Comet Borrelly , 2004 .

[41]  D. Schleicher Deep Impact's target Comet 9P/Tempel 1 at multiple apparitions: Seasonal and secular variations in gas and dust production , 2007 .

[42]  W. M. Owen,et al.  Stardust–NExT NAVCAM calibration and performance , 2013 .

[43]  Noah Brosch,et al.  Stardust-NExT, Deep Impact, and the accelerating spin of 9P/Tempel 1 , 2011 .