A revolving iterative algorithm for decoding algebraic quasi-cyclic LDPC codes

An effective reduced-complexity min-sum algorithm for decoding algebraic quasi-cyclic LDPC codes is presented. The proposed decoding algorithm significantly reduces the hardware implementation complexity, the size of memory required to store information, and the computational complexity of a decoder with no or a small loss in performance compared to the scaled min-sum algorithm.

[1]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[2]  Qin Huang,et al.  Quasi-Cyclic LDPC Codes: An Algebraic Construction, Rank Analysis, and Codes on Latin Squares , 2010, IEEE Transactions on Communications.

[3]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[4]  William Ryan,et al.  Channel Codes: Classical and Modern , 2009 .

[5]  Payam Pakzad,et al.  Abstract—two Decoding Schedules and the Corresponding Serialized Architectures for Low-density Parity-check (ldpc) , 2001 .

[6]  William Ryan,et al.  Channel Codes by William Ryan , 2009 .

[7]  Donald Ervin Knuth,et al.  The Art of Computer Programming, 2nd Ed. (Addison-Wesley Series in Computer Science and Information , 1978 .

[8]  Shu Lin,et al.  Channel Codes: Classical and Modern , 2009 .

[9]  D.E. Hocevar,et al.  A reduced complexity decoder architecture via layered decoding of LDPC codes , 2004, IEEE Workshop onSignal Processing Systems, 2004. SIPS 2004..

[10]  Shu Lin,et al.  Construction of Quasi-Cyclic LDPC Codes for AWGN and Binary Erasure Channels: A Finite Field Approach , 2007, IEEE Transactions on Information Theory.

[11]  M. Darnell,et al.  Error Control Coding: Fundamentals and Applications , 1985 .

[12]  Qiuju Diao,et al.  Cyclic and Quasi-Cyclic LDPC Codes on Constrained Parity-Check Matrices and Their Trapping Sets , 2012, IEEE Transactions on Information Theory.

[13]  Ajay Dholakia,et al.  Reduced-complexity decoding of LDPC codes , 2005, IEEE Transactions on Communications.