Direct formation of La(Fe,Si)13 phase with enhanced mechanical property of off-stoichiometric La1.7Fe11.6Si1.4 alloys by directional solidification

[1]  O. Gutfleisch,et al.  Tunable first order transition in La(Fe,Cr,Si)13 compounds: Retaining magnetocaloric response despite a magnetic moment reduction , 2019, Acta Materialia.

[2]  Jiehua Li,et al.  Microstructure and magnetic property of LaFe11.6Si1.4 magnetocaloric alloys by a novel short time heat treatment , 2019, Intermetallics.

[3]  O. Gutfleisch,et al.  The role of Ni in modifying the order of the phase transition of La(Fe,Ni,Si)13 , 2018, Acta Materialia.

[4]  Qingmei Zhang,et al.  Balancing negative and positive thermal expansion effect in dual-phase La(Fe,Si)13/α-Fe in-situ composite with improved compressive strength , 2018, Journal of Alloys and Compounds.

[5]  Jianguo Li,et al.  Peritectic Solidification Path of the La(Fe,Si)13 Phase in Dual-Phase Directionally Solidified La-Fe-Si Magnetocaloric Alloys , 2017, Metallurgical and Materials Transactions A.

[6]  A. Yan,et al.  Direct formation of NaZn13-structure La(Fe,Si)13 phase by directional solidification , 2017 .

[7]  O. Gutfleisch,et al.  High-performance solid-state cooling materials: Balancing magnetocaloric and non-magnetic properties in dual phase La-Fe-Si , 2017 .

[8]  A. Yan,et al.  A systematic study of the microstructure, phase formation and magnetocaloric properties in off-stoichiometric La-Fe-Si alloys , 2016 .

[9]  H. Luo,et al.  Enhanced thermal conductivity in off-stoichiometric La-(Fe,Co)-Si magnetocaloric alloys , 2015 .

[10]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[11]  Dell Zhang,et al.  Banded-like morphology and martensitic transformation of dual-phase Ni–Mn–In magnetic shape memory alloy with enhanced ductility , 2013 .

[12]  A. Yan,et al.  A new approach to prepare spherical La–Fe–Si–Co magnetocaloric refrigerant particles , 2013 .

[13]  S. Fujieda,et al.  Microstructure and isothermal magnetic entropy change of La(Fe0.89Si0.11)13 in a single-phase formation process by annealing , 2013 .

[14]  Fu Song,et al.  Formation of 1:13 Phase in La(Fe,Si)$_{13}$-Based Compounds by Diffusion of LaFe,Si$/\alpha-$ Fe(Si) Couple , 2012, IEEE transactions on magnetics.

[15]  K. Gschneidner,et al.  On the nature of the magnetocaloric effect of the first-order magnetostructural transition , 2012 .

[16]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.

[17]  Konstantin P. Skokov,et al.  Systematic study of the microstructure, entropy change and adiabatic temperature change in optimized La–Fe–Si alloys , 2011 .

[18]  F. Hu,et al.  Recent Progress in Exploring Magnetocaloric Materials , 2009, 1006.3415.

[19]  O. Gutfleisch,et al.  Large magnetocaloric effect in melt-spun LaFe13−xSix , 2005 .

[20]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[21]  S. Fujieda,et al.  Large magnetocaloric effect in La(FexSi1−x)13 itinerant-electron metamagnetic compounds , 2002 .

[22]  F. Hu,et al.  Very large magnetic entropy change near room temperature in LaFe11.2Co0.7Si1.1 , 2002 .

[23]  F. D. Boer,et al.  Transition-metal-based magnetic refrigerants for room-temperature applications , 2002, Nature.

[24]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[25]  K. Fukamichi,et al.  Itinerant electron metamagnetic transition in La(FexSi1−x)13 intermetallic compounds , 1999 .

[26]  S. Rashidi,et al.  Magnetocaloric Materials , 2021, Reference Module in Materials Science and Materials Engineering.

[27]  Li Yang,et al.  Martensitic transformations and kinetics in Ni-Mn-In-Mg shape memory alloys , 2018 .

[28]  R. Kainuma,et al.  Phase equilibria in the Fe–La–Si ternary system , 2012 .

[29]  H. W. Kerr,et al.  Solidification of peritectic alloys , 1996 .