The current martian cratering rate

Abstract The discovery of 248 dated impact sites known to have formed within the last few decades allows us to refine the current cratering rate and slope of the production function at Mars. We use a subset of 44 of these new craters that were imaged before and after impact by Mars Reconnaissance Orbiter’s Context Camera – a thoroughly searched data set that minimizes biases from variable image resolutions. We find the current impact rate is 1.65 × 10−6 craters with an effective diameter ⩾3.9 m/km2/yr, with a differential slope (power-law exponent) of −2.45 ± 0.36. This results in model ages that are factors of three to five below the Hartmann (Hartmann, W.K. [2005]. Icarus 174, 294–320) and Neukum et al. (Neukum, G., Ivanov, B.A., Hartmann, W.K. [2001]. Space Sci. Rev. 96, 55–86)/Ivanov (Ivanov, B.A. [2001]. Space Sci. Rev. 96, 87–104) model production functions where they overlap in diameter. The best-fit production function we measure has a shallower slope than model functions at these sizes, but model function slopes are within the statistical errors. More than half of the impacts in this size range form clusters, which is another reason to use caution when estimating surface ages using craters smaller than ∼50 m in diameter.

[1]  G. Ryder,et al.  Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System , 2001 .

[2]  S. Werner,et al.  Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars , 2011 .

[3]  T. Quinn,et al.  A 1 Gyr climate model for Mars: new orbital statistics and the importance of seasonally resolved polar processes , 2004 .

[4]  S. Ruff,et al.  Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .

[5]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[6]  B. Ivanov Earth/Moon impact rate comparison: Searching constraints for lunar secondary/primary cratering proportion , 2006 .

[7]  Brett James Gladman,et al.  Asteroid Showers on Earth after Family Breakup Events , 1998 .

[8]  Yadvinder Malhi,et al.  Energy and water dynamics of a central Amazonian rain forest , 2002 .

[9]  B. Cohen,et al.  Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. , 2000, Science.

[10]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[11]  Jacques Laskar,et al.  Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .

[12]  J. Veverka,et al.  Crater densities on the satellites of Mars , 1980 .

[13]  J. Borovička,et al.  Very low strengths of interplanetary meteoroids and small asteroids , 2011 .

[14]  W. Hartmann Megaregolith evolution and cratering cataclysm models—Lunar cataclysm as a misconception (28 years later) , 2003 .

[15]  Alfred S. McEwen,et al.  Role of material properties in the cratering record of young platy‐ridged lava on Mars , 2010 .

[16]  C. Chapman,et al.  Lunar cratering and erosion from Orbiter V photographs. , 1970 .

[17]  G. Neukum,et al.  Planetary surface dating from crater size-frequency distribution measurements: Partial resurfacing events and statistical age uncertainty , 2010 .

[18]  J. Owen Isotopic Evidence , 2019, Hydromagmatic Processes and Platinum-Group Element Deposits in Layered Intrusions.

[19]  Gregory Michael,et al.  Planetary surface dating from crater size–frequency distribution measurements: Spatial randomness and clustering , 2012 .

[20]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[21]  R. Strom,et al.  Problems determining relative and absolute ages using the small crater population , 2012 .

[22]  Nicolas Thomas,et al.  Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters , 2009, Science.

[23]  W. Hartmann Lunar “cataclysm”: A misconception? , 1975 .

[24]  Alfred S. McEwen,et al.  Constraints on ripple migration at Meridiani Planum from Opportunity and HiRISE observations of fresh craters , 2010 .

[25]  E. M. Shoemaker,et al.  Preliminary analysis of the fine structure of the lunar surface , 1965 .

[26]  A. McEwen,et al.  Windy Mars: A dynamic planet as seen by the HiRISE camera , 2007 .

[27]  Raymond E. Arvidson,et al.  Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces , 2008 .

[28]  Boris A. Ivanov,et al.  Mars/Moon Cratering Rate Ratio Estimates , 2001 .

[29]  William K. Hartmann,et al.  Martian cratering 8: Isochron refinement and the chronology of Mars , 2005 .

[30]  William K. Hartmann,et al.  Cratering Records in the Inner Solar System in Relation to the Lunar Reference System , 2001 .

[31]  C. Pieters,et al.  The Continuum Slope of Mars: Bidirectional Reflectance Investigations and Applications to Olympus Mons , 1993 .

[32]  Alfred S. McEwen,et al.  Seasonal activity and morphological changes in martian gullies , 2012 .

[33]  G. Neukum,et al.  Crater Size Distributions and Impact Probabilities on Earth from Lunar, Terrestrial Planeta, and Asteroid Cratering Data , 1994 .

[34]  B. Hynek,et al.  Distant secondary craters from Lyot crater, Mars, and implications for surface ages of planetary bodies , 2011 .

[35]  Clark R. Chapman,et al.  Mercury crater statistics from MESSENGER flybys: Implications for stratigraphy and resurfacing history , 2011 .

[36]  R. Baldwin Relative and absolute ages of individual craters and the rate of infalls on the moon in the post-imbrium period , 1985 .

[37]  Randolph L. Kirk,et al.  The rayed crater Zunil and interpretations of small impact craters on Mars , 2005 .

[38]  A. McEwen,et al.  Planet-wide sand motion on Mars , 2012 .

[39]  A. McEwen,et al.  Depth to Diameter Ratios of Recent Primary Impact Craters on Mars , 2009 .

[40]  Gian Gabriele Ori,et al.  Ripple migration and dune activity on Mars: Evidence for dynamic wind processes , 2010 .

[41]  Kenneth S Edgett,et al.  Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars , 2006, Science.

[42]  Jeffrey R. Johnson,et al.  Gone with the wind: Eolian erasure of the Mars Rover tracks , 2010 .

[43]  Boris A. Ivanov,et al.  Cratering on Venus: Models and Observations , 1997 .

[44]  Alfred S. McEwen,et al.  THE IMPORTANCE OF SECONDARY CRATERING TO AGE CONSTRAINTS ON PLANETARY SURFACES , 2006 .

[45]  W. Hartmann Martian cratering 9: Toward resolution of the controversy about small craters , 2007 .

[46]  T. Michaels,et al.  Orbital observations of contemporary dune activity in Endeavor crater, Meridiani Planum, Mars , 2011 .

[47]  D. A. Papanastassiou,et al.  Isotopic evidence for a terminal lunar cataclysm , 1974 .

[48]  Nicolas Thomas,et al.  The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP) , 2010 .

[49]  Derek C. Richardson,et al.  Crater clusters on Mars : Shedding light on martian ejecta launch conditions , 2007 .

[50]  H. Melosh,et al.  SMALL IMPACT CRATER CLUSTERS IN HIGH RESOLUTION HIRISE IMAGES , 2008 .

[51]  G. Neukum,et al.  Cratering on Gaspra , 1993 .

[52]  Kevin R. Housen,et al.  Impact cratering on porous asteroids , 2003 .

[53]  William K. Hartmann,et al.  Cratering Chronology and the Evolution of Mars , 2001 .

[54]  J. Avouac,et al.  Earth-like sand fluxes on Mars , 2012, Nature.

[55]  N. Artemieva,et al.  Motion of a fragmented meteoroid through the planetary atmosphere , 2001 .

[56]  Stephanie C. Werner,et al.  Theoretical analysis of secondary cratering on Mars and an image-based study on the Cerberus Plains , 2009 .

[57]  Alfred S. McEwen,et al.  Impact airblast triggers dust avalanches on Mars , 2012 .

[58]  William K. Hartmann,et al.  Bolides in the present and past martian atmosphere and effects on cratering processes , 2003 .

[59]  J. Oberst,et al.  A search for clustering among the meteoroid impacts detected by the Apollo lunar seismic network , 1991 .

[60]  A. Basilevsky,et al.  The geologic evolution of Mars: Episodicity of resurfacing events , 2010 .

[61]  V. Sharpton,et al.  Influences of atmospheric variations on Mars's record of small craters , 2005 .

[62]  M. S. Matthews,et al.  Hazards Due to Comets and Asteroids , 1992 .