Truncations of random symplectic unitary matrices

This paper is concerned with complex eigenvalues of truncated unitary quaternion matrices equipped with the Haar measure. The joint eigenvalue probability density function is obtained for truncations of any size. We also obtain the spectral density and the eigenvalue correlation functions in various scaling limits. In the limit of strong non-unitarity the universal complex Ginibre form of the correlation functions is recovered in the spectral bulk off the real line after unfolding the spectrum. In the limit of weak non-unitarity we obtain the spectral density and eigenvalue correlation functions for all regions of interest. Off the real line the obtained expressions coincide with those previously obtained for truncations of Haar unitary complex matrices.

[1]  C. Sinclair,et al.  The Ginibre Ensemble of Real Random Matrices and its Scaling Limits , 2008, 0805.2986.

[2]  Y. Fyodorov,et al.  Nonlinear analogue of the May−Wigner instability transition , 2015, Proceedings of the National Academy of Sciences.

[3]  ROBERT M. MAY,et al.  Will a Large Complex System be Stable? , 1972, Nature.

[4]  Nelson,et al.  Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.

[5]  F. Dyson Correlations between eigenvalues of a random matrix , 1970 .

[6]  B. Rider A limit theorem at the edge of a non-Hermitian random matrix ensemble , 2003 .

[7]  A. Edelman The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .

[8]  Yan V Fyodorov,et al.  Random matrices close to Hermitian or unitary: overview of methods and results , 2003 .

[9]  H. Sommers,et al.  Truncations of random unitary matrices , 1999, chao-dyn/9910032.

[10]  RANDOM RIGHT EIGENVALUES OF GAUSSIAN QUATERNIONIC MATRICES , 2011, 1104.4455.

[11]  J. R. Ipsen,et al.  Permanental processes from products of complex and quaternionic induced Ginibre ensembles , 2014, 1404.4583.

[12]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[13]  Gernot Akemann,et al.  Universal Signature from Integrability to Chaos in Dissipative Open Quantum Systems. , 2019, Physical review letters.

[14]  G. Schehr,et al.  Exact Persistence Exponent for the 2D-Diffusion Equation and Related Kac Polynomials. , 2018, Physical review letters.

[15]  J. R. Ipsen,et al.  Real eigenvalue statistics for products of asymmetric real Gaussian matrices , 2016, 1608.04097.

[16]  H. Sommers,et al.  Truncations of random orthogonal matrices. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Correlation Functions for Eigenvalues of Real Quaternian Matrices , 1966 .

[18]  Elizabeth Meckes,et al.  The Random Matrix Theory of the Classical Compact Groups , 2019 .

[19]  Y. Fyodorov,et al.  Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance , 1997 .

[20]  SYSTEMATIC ANALYTICAL APPROACH TO CORRELATION FUNCTIONS OF RESONANCES IN QUANTUM CHAOTIC SCATTERING , 1999, cond-mat/9903043.

[21]  Marc Timme,et al.  Topological speed limits to network synchronization. , 2003, Physical review letters.

[22]  Nam-Gyu Kang,et al.  Scaling Limits of Planar Symplectic Ensembles , 2021, Symmetry, Integrability and Geometry: Methods and Applications.

[23]  L. Chau,et al.  On the Structure of Correlation Functions in the Normal Matrix Model , 1998 .

[24]  H. Sommers Symplectic structure of the real Ginibre ensemble , 2007, 0706.1671.

[25]  M. L. Eaton Group invariance applications in statistics , 1989 .

[26]  Eigenvalue correlations in non-Hermitean symplectic random matrices , 2001, cond-mat/0109287.

[27]  F. Haake Quantum signatures of chaos , 1991 .

[28]  P. J. Forrester,et al.  How Many Eigenvalues of a Product of Truncated Orthogonal Matrices are Real? , 2017, Exp. Math..

[29]  N. Makarov,et al.  Fluctuations of eigenvalues of random normal matrices , 2008, 0807.0375.

[30]  Terence Tao,et al.  Random matrices: Universality of local spectral statistics of non-Hermitian matrices , 2012, 1206.1893.

[31]  Dang-Zheng Liu,et al.  Universality for products of random matrices I: Ginibre and truncated unitary cases , 2014, 1411.2787.

[32]  Sung-Soo Byun,et al.  Universal scaling limits of the symplectic elliptic Ginibre ensemble , 2021 .

[33]  Yan V Fyodorov,et al.  A few remarks on colour–flavour transformations, truncations of random unitary matrices, Berezin reproducing kernels and Selberg-type integrals , 2006, math-ph/0610045.

[34]  J. R. Ipsen Products of Independent Quaternion Ginibre Matrices and their Correlation Functions , 2013 .

[35]  Averages over Ginibre's Ensemble of Random Real Matrices , 2006, math-ph/0605006.

[36]  J. L. Brenner,et al.  Matrices of quaternions. , 1951 .

[37]  Mario Kieburg,et al.  Weak commutation relations and eigenvalue statistics for products of rectangular random matrices. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  P. J. Forrester Quantum conductance problems and the Jacobi ensemble , 2006 .

[39]  Z. Burda,et al.  Universal microscopic correlation functions for products of truncated unitary matrices , 2013, 1310.6395.

[40]  P. Forrester Analogies between random matrix ensembles and the one-component plasma in two-dimensions , 2015, 1511.02946.

[41]  M. Stephanov Random matrix model of QCD at finite density and the nature of the quenched limit. , 1996, Physical Review Letters.

[42]  Fermionic mapping for eigenvalue correlation functions of weakly non-Hermitian symplectic ensemble , 1999, cond-mat/9907302.

[43]  G. Akemann,et al.  Gap probabilities in non-Hermitian random matrix theory , 2009, 0901.0897.

[44]  Manjunath Krishnapur From random matrices to random analytic functions , 2007, 0711.1378.

[45]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[46]  Jonit Fischmann Eigenvalue distributions on a single ring. , 2013 .

[47]  Z. Burda,et al.  Universal microscopic correlation functions for products of independent Ginibre matrices , 2012, 1208.0187.

[48]  P. Forrester Log-Gases and Random Matrices , 2010 .

[49]  G. Dubach,et al.  Symmetries of the quaternionic Ginibre ensemble , 2018, 1811.03724.

[50]  Gernot Akemann,et al.  Skew-Orthogonal Polynomials in the Complex Plane and Their Bergman-Like Kernels , 2021, Communications in Mathematical Physics.

[51]  Yan V. Fyodorov,et al.  Counting equilibria of large complex systems by instability index , 2020, Proceedings of the National Academy of Sciences.

[52]  P. Forrester,et al.  Pfaffian point process for the Gaussian real generalised eigenvalue problem , 2009, 0910.2531.

[53]  Wojciech T. Bruzda,et al.  Induced Ginibre ensemble of random matrices and quantum operations , 2011, 1107.5019.