GPU-Accelerated Real-Time Stixel Computation

The Stixel World is a medium-level, compact representation of road scenes that abstracts millions of disparity pixels into hundreds or thousands of stixels. The goal of this work is to implement and evaluate a complete multistixel estimation pipeline on an embedded, energy-efficient, GPU-accelerated device. This work presents a full GPUaccelerated implementation of stixel estimation that produces reliable results at 26 frames per second (real-time) on the Tegra X1 for disparity images of 1024×440 pixels and stixel widths of 5 pixels, and achieves more than 400 frames per second on a high-end Titan X GPU card.

[1]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[2]  Guy E. Blelloch,et al.  Scans as Primitive Parallel Operations , 1989, ICPP.

[3]  David Pfeiffer,et al.  The Stixel World: a compact medium-level represantation for efficiently modeling dynamic three-dimensional environments , 2011 .

[4]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Uwe Franke,et al.  Towards a Global Optimal Multi-Layer Stixel Representation of Dense 3D Data , 2011, BMVC.

[6]  Antonio M. López,et al.  Embedded Real-time Stereo Estimation via Semi-Global Matching on the GPU , 2016, ICCS.

[7]  Nicolai Schneider,et al.  Stix-Fusion: A Probabilistic Stixel Integration Technique , 2014, 2014 Canadian Conference on Computer and Robot Vision.

[8]  Stefan K. Gehrig,et al.  Exploiting the Power of Stereo Confidences , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Antonio M. López,et al.  The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Luc Van Gool,et al.  Stixels estimation without depth map computation , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[11]  Mark J. Harris,et al.  Parallel Prefix Sum (Scan) with CUDA , 2011 .

[12]  Markus Enzweiler,et al.  Efficient Stixel-based object recognition , 2012, 2012 IEEE Intelligent Vehicles Symposium.

[13]  Luc Van Gool,et al.  Fast Stixel Computation for Fast Pedestrian Detection , 2012, ECCV Workshops.

[14]  Marc Pollefeys,et al.  Semantic Stixels: Depth is not enough , 2016, 2016 IEEE Intelligent Vehicles Symposium (IV).

[15]  Uwe Franke,et al.  Efficient representation of traffic scenes by means of dynamic stixels , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[16]  Uwe Franke,et al.  The Stixel World - A Compact Medium Level Representation of the 3D-World , 2009, DAGM-Symposium.

[17]  Daniel Cremers,et al.  B-Spline Modeling of Road Surfaces With an Application to Free-Space Estimation , 2009, IEEE Transactions on Intelligent Transportation Systems.