Insights into the Genome of Large Sulfur Bacteria Revealed by Analysis of Single Filaments

Marine sediments are frequently covered by mats of the filamentous Beggiatoa and other large nitrate-storing bacteria that oxidize hydrogen sulfide using either oxygen or nitrate, which they store in intracellular vacuoles. Despite their conspicuous metabolic properties and their biogeochemical importance, little is known about their genetic repertoire because of the lack of pure cultures. Here, we present a unique approach to access the genome of single filaments of Beggiatoa by combining whole genome amplification, pyrosequencing, and optical genome mapping. Sequence assemblies were incomplete and yielded average contig sizes of approximately 1 kb. Pathways for sulfur oxidation, nitrate and oxygen respiration, and CO2 fixation confirm the chemolithoautotrophic physiology of Beggiatoa. In addition, Beggiatoa potentially utilize inorganic sulfur compounds and dimethyl sulfoxide as electron acceptors. We propose a mechanism of vacuolar nitrate accumulation that is linked to proton translocation by vacuolar-type ATPases. Comparative genomics indicates substantial horizontal gene transfer of storage, metabolic, and gliding capabilities between Beggiatoa and cyanobacteria. These capabilities enable Beggiatoa to overcome non-overlapping availabilities of electron donors and acceptors while gliding between oxic and sulfidic zones. The first look into the genome of these filamentous sulfur-oxidizing bacteria substantially deepens the understanding of their evolution and their contribution to sulfur and nitrogen cycling in marine sediments.

[1]  J. Handelsman,et al.  Cloning the Soil Metagenome: a Strategy for Accessing the Genetic and Functional Diversity of Uncultured Microorganisms , 2000, Applied and Environmental Microbiology.

[2]  Susan J. Smith,et al.  The mechanism of nitrate transport across the tonoplast of barley root cells , 1992, Planta.

[3]  C. Wirsen Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydro-thermal deep-sea vent site , 1990, Nature.

[4]  R. Lasken,et al.  Genomic DNA Amplification from a Single Bacterium , 2005, Applied and Environmental Microbiology.

[5]  D. Brune,et al.  Novel Genes of the dsr Gene Cluster and Evidence for Close Interaction of Dsr Proteins during Sulfur Oxidation in the Phototrophic Sulfur Bacterium Allochromatium vinosum , 2005, Journal of bacteriology.

[6]  D. Brune,et al.  Sulfur Compounds as Photosynthetic Electron Donors , 1995 .

[7]  J. Waterbury,et al.  Distribution and Diversity of Natural Product Genes in Marine and Freshwater Cyanobacterial Cultures and Genomes , 2005, Applied and Environmental Microbiology.

[8]  D. Nelson,et al.  Use of Reduced Sulfur Compounds by Beggiatoa spp.: Enzymology and Physiology of Marine and Freshwater Strains in Homogeneous and Gradient Cultures , 1997, Applied and environmental microbiology.

[9]  B. Jørgensen,et al.  Sulfide oxidation in marine sediments: Geochemistry meets microbiology , 2004 .

[10]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[11]  S. Karlin,et al.  Dinucleotide relative abundance extremes: a genomic signature. , 1995, Trends in genetics : TIG.

[12]  M. Ronaghi,et al.  A Sequencing Method Based on Real-Time Pyrophosphate , 1998, Science.

[13]  Karsten Zengler,et al.  Targeted Access to the Genomes of Low-Abundance Organisms in Complex Microbial Communities , 2007, Applied and Environmental Microbiology.

[14]  Luis H. Ocampo,et al.  The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2 , 2006, PLoS biology.

[15]  R. Castenholz,et al.  Diel Migrations of Microorganisms within a Benthic, Hypersaline Mat Community , 1994, Applied and environmental microbiology.

[16]  W. Strohl,et al.  Determination of the molecular mass of bacterial genomic DNA and plasmid copy number by high-pressure liquid chromatography , 1985, Applied and environmental microbiology.

[17]  E. Willery,et al.  Beta‐helix model for the filamentous haemagglutinin adhesin of Bordetella pertussis and related bacterial secretory proteins , 2001, Molecular microbiology.

[18]  B. Jørgensen,et al.  Growth Pattern and Yield of a Chemoautotrophic Beggiatoa sp. in Oxygen-Sulfide Microgradients , 1986, Applied and environmental microbiology.

[19]  D. Nelson,et al.  High Nitrate Concentrations in Vacuolate, Autotrophic Marine Beggiatoa spp , 1996, Applied and environmental microbiology.

[20]  E. Koonin,et al.  Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. , 2000, Science.

[21]  S. Joye,et al.  Evidence of giant sulphur bacteria in Neoproterozoic phosphorites , 2007, Nature.

[22]  Gerrit Voordouw,et al.  Physiological and Gene Expression Analysis of Inhibition of Desulfovibrio vulgaris Hildenborough by Nitrite , 2004, Journal of bacteriology.

[23]  P. Brimblecombe,et al.  Photo-oxidation of dimethylsulphide in aqueous solution , 1986 .

[24]  J. Banfield,et al.  Community structure and metabolism through reconstruction of microbial genomes from the environment , 2004, Nature.

[25]  D. Nelson,et al.  Cultivated Beggiatoa spp. define the phylogenetic root of morphologically diverse, noncultured, vacuolate sulfur bacteria. , 2006, Canadian journal of microbiology.

[26]  H. N. Schulz,et al.  Big bacteria. , 2001, Annual review of microbiology.

[27]  R. Amann,et al.  Clustered Genes Related to Sulfate Respiration in Uncultured Prokaryotes Support the Theory of Their Concomitant Horizontal Transfer , 2005, Journal of bacteriology.

[28]  L. Nielsen,et al.  Oxygen Responses and Mat Formation by Beggiatoa spp , 1985, Applied and environmental microbiology.

[29]  Roger S Lasken,et al.  Whole genome amplification: abundant supplies of DNA from precious samples or clinical specimens. , 2003, Trends in biotechnology.

[30]  Roger S Lasken,et al.  Mechanism of chimera formation during the Multiple Displacement Amplification reaction , 2007 .

[31]  D. Brune,et al.  Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum , 2006, Molecular microbiology.

[32]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[33]  C. Dahl,et al.  Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. , 1997, Microbiology.

[34]  D. de Beer,et al.  Uptake Rates of Oxygen and Sulfide Measured with Individual Thiomargarita namibiensis Cells by Using Microelectrodes , 2002, Applied and Environmental Microbiology.

[35]  R. Amann,et al.  Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. , 2003, Environmental microbiology.

[36]  K. Yokoyama,et al.  Rotation, Structure, and Classification of Prokaryotic V-ATPase , 2005, Journal of bioenergetics and biomembranes.

[37]  Natalia N. Ivanova,et al.  Symbiosis insights through metagenomic analysis of a microbial consortium. , 2006, Nature Reviews Microbiology.

[38]  R. Giegerich,et al.  GenDB--an open source genome annotation system for prokaryote genomes. , 2003, Nucleic acids research.

[39]  Richard E. Moore,et al.  Isolation and Structures of Nostopeptolides A1, A2 and A3 from the Cyanobacterium Nostoc sp. GSV224 , 2000 .

[40]  R. Amann,et al.  Application of tetranucleotide frequencies for the assignment of genomic fragments. , 2004, Environmental microbiology.

[41]  P. Bork,et al.  Prediction of effective genome size in metagenomic samples , 2007, Genome Biology.

[42]  B. Jørgensen,et al.  Dense populations of a giant sulfur bacterium in Namibian shelf sediments. , 1999, Science.

[43]  Miriam L. Land,et al.  Genome Sequence of the Chemolithoautotrophic Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Nb-255 , 2006, Applied and Environmental Microbiology.

[44]  H. Schulz,et al.  Large Sulfur Bacteria and the Formation of Phosphorite , 2005, Science.

[45]  B. Berks,et al.  Specificity of respiratory pathways involved in the reduction of sulfur compounds by Salmonella enterica. , 2002, Microbiology.

[46]  Hervé Philippe,et al.  The potential value of indels as phylogenetic markers: position of trichomonads as a case study. , 2002, Molecular biology and evolution.

[47]  C. Friedrich,et al.  Oxidation of Reduced Inorganic Sulfur Compounds by Bacteria: Emergence of a Common Mechanism? , 2001, Applied and Environmental Microbiology.

[48]  D C Nelson,et al.  Use of reduced sulfur compounds by Beggiatoa sp , 1981, Journal of bacteriology.

[49]  E. Blumwald,et al.  Nitrate storage and retrieval in Beta vulgaris: Effects of nitrate and chloride on proton gradients in tonoplast vesicles. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[50]  B. Ahring,et al.  Specific single-cell isolation and genomic amplification of uncultured microorganisms , 2007, Applied Microbiology and Biotechnology.

[51]  Victor A. Gallardo,et al.  Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles , 1999 .

[52]  B. Jørgensen Distribution of colorless sulfur bacteria (Beggiatoa spp.) in a coastal marine sediment , 1977 .

[53]  C. Dahl,et al.  Sirohaem sulfite reductase and other proteins encoded by genes at the dsr locus of Chromatium vinosum are involved in the oxidation of intracellular sulfur. , 1998, Microbiology.

[54]  E. Padan,et al.  Sulfur metabolism in Beggiatoa alba , 1987, Journal of bacteriology.

[55]  B. Jørgensen,et al.  Pathways and Microbiology of Thiosulfate Transformations and Sulfate Reduction in a Marine Sediment (Kattegat, Denmark) , 1991, Applied and environmental microbiology.

[56]  D. Monachello,et al.  The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles , 2006, Nature.

[57]  M. Muntyan,et al.  Regulation of Metabolic and Electron Transport Pathways in the Freshwater Bacterium Beggiatoa leptomitiformis D-402 , 2005, Microbiology.

[58]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[59]  Hans W. Paerl,et al.  Nitrogen, Carbon, and Sulfur Metabolism in NaturalThioploca Samples , 1999, Applied and Environmental Microbiology.

[60]  S Miyano,et al.  Open source clustering software. , 2004, Bioinformatics.

[61]  Lila Kari,et al.  The spectrum of genomic signatures: from dinucleotides to chaos game representation. , 2005, Gene.

[62]  L. Nielsen,et al.  Impact of Bacterial NO3− Transport on Sediment Biogeochemistry , 2005, Applied and Environmental Microbiology.

[63]  D. Nelson,et al.  Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures , 1983, Archives of Microbiology.

[64]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[65]  D. Kelly,et al.  The prokaryotes: an evolving electronic resource for the microbiological community - , 2002 .

[66]  David C. Schwartz,et al.  Whole-Genome Shotgun Optical Mapping of Rhodospirillum rubrum , 2004, Applied and Environmental Microbiology.

[67]  Michael Schlüter,et al.  In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano , 2006 .

[68]  G. Dubinina,et al.  Mixotrophic and lithoheterotrophic growth of the freshwater filamentous sulfur bacterium Beggiatoa leptomitiformis D-402 , 1998 .

[69]  K. Finster,et al.  Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulfate and elemental sulfur , 2003, Biodegradation.

[70]  G. Cannon,et al.  Heterotrophic Carbon Metabolism by Beggiatoa alba , 1981, Journal of bacteriology.

[71]  A. Kamp,et al.  Anaerobic Sulfide Oxidation with Nitrate by a Freshwater Beggiatoa Enrichment Culture , 2006, Applied and Environmental Microbiology.

[72]  D. Nelson,et al.  The Genera Beggiatoa and Thioploca , 2006 .

[73]  T. Treude,et al.  Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean , 2003 .

[74]  D. Richardson,et al.  Periplasmic and membrane‐bound respiratory nitrate reductases in Thiosphaera pantotropha , 1990, FEBS letters.

[75]  W. Ludwig,et al.  Lack of relationship between gliding cyanobacteria and filamentous gliding heterotrophic eubacteria: comparison of 16S rRNA catalogues of Spirulina, Saprospira, Vitreoscilla, Leucothrix, and Herpetosiphon , 1986, Archives of Microbiology.

[76]  J. Deming,et al.  Evidence for the microbial basis of a chemoautotrophic invertebrate community at a whale fall on the deep seafloor: Bone‐colonizing bacteria and invertebrate endosymbionts , 1997, Microscopy research and technique.

[77]  G. Church,et al.  Sequencing genomes from single cells by polymerase cloning , 2006, Nature Biotechnology.

[78]  Susan J. Smith,et al.  Remobilisation of vacuolar stored nitrate in barley root cells , 1998, Planta.

[79]  M. Maeshima Vacuolar H(+)-pyrophosphatase. , 2000, Biochimica et biophysica acta.

[80]  Dmitrij Frishman,et al.  Deciphering the evolution and metabolism of an anammox bacterium from a community genome , 2006, Nature.

[81]  Horizontal transfers confuse the prokaryotic phylogeny based on the HSP70 protein family , 1999, Molecular microbiology.

[82]  P. Richardson,et al.  The Genome Sequence of the Obligately Chemolithoautotrophic, Facultatively Anaerobic Bacterium Thiobacillus denitrificans , 2006, Journal of bacteriology.

[83]  N. Crawford,et al.  Molecular and physiological aspects of nitrate uptake in plants , 1998 .

[84]  S. Kingsmore,et al.  Comprehensive human genome amplification using multiple displacement amplification , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[85]  R. Gunsalus,et al.  The napF and narG Nitrate Reductase Operons in Escherichia coli Are Differentially Expressed in Response to Submicromolar Concentrations of Nitrate but Not Nitrite , 1999, Journal of bacteriology.

[86]  H Nielsen,et al.  Machine learning approaches for the prediction of signal peptides and other protein sorting signals. , 1999, Protein engineering.

[87]  R. Wolfe,et al.  ENRICHMENT AND CULTIVATION OF BEGGIATOA ALBA , 1961, Journal of bacteriology.

[88]  M. Reinartz,et al.  Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum , 1998, Archives of Microbiology.

[89]  N. Revsbech,et al.  Colorless Sulfur Bacteria, Beggiatoa spp. and Thiovulum spp., in O2 and H2S Microgradients , 1983, Applied and environmental microbiology.

[90]  D. Nelson,et al.  Organic carbon utilization by obligately and facultatively autotrophic beggiatoa strains in homogeneous and gradient cultures , 1996, Applied and environmental microbiology.

[91]  D. Canfield,et al.  Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca , 1995, Nature.

[92]  M. Polz,et al.  Diversity and Dynamics of a North Atlantic Coastal Vibrio Community , 2004, Applied and Environmental Microbiology.

[93]  Roger S. Lasken,et al.  Multiple displacement amplification from single bacterial cells , 2005 .

[94]  F. Dean,et al.  Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. , 2001, Genome research.

[95]  Richard E. Moore,et al.  Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp. GSV224. , 2003, Gene.

[96]  P. Liss,et al.  Particulate dimethyl sulphoxide in seawater:production by microplankton , 1998 .