Productive performance, technology heterogeneity and hierarchies: Who to compare with whom

In this paper we argue that inappropriate handling of technological heterogeneity distorts the benchmarking process eroding performance scores. Country- and industry-specific frontier studies have been the dominant approaches in explaining productivity differentials stating that heterogeneous performance patterns are attributed to different sources. However, studies bringing together the above approaches have not been surfaced yet. We fill that void by partitioning the metafrontier to account for alternative technological hierarchies. To disentangle the layers of complexity triggering heterogeneous performance, we introduce two types of heterogeneity each one referring to different stages of the performance evaluation process. To identify the Decision making unit-Specific Heterogeneity type, attached to each entity, we propose the w-ratio as a result of an iterative algorithm developed herein. In order to identify the Hierarchical Structural Heterogeneity type arising under alternative hierarchical structures, we define thresholds of heterogeneity. Using data on seventeen European countries and thirteen industries from manufacturing and transportation from 1999 through 2006 and employing a control function approach with one endogenous covariate, we find that the DSH and the HSH type are endogenously related via the role of the state dependence while the path dependence phenomenon is a major catalyst for future technological achievements and productivity improvements. Transition economies and fragmented industries exhibit persistent technological heterogeneity regardless of the technological structure adopted, since further development is mostly affected by past characteristics of the economic environment implying low subsequent competitiveness.

[1]  S. Kumbhakar,et al.  Ownership, business environment and productivity change , 2008 .

[2]  Lung-fei Lee,et al.  The measurement and sources of technical inefficiency in the Indonesian weaving industry , 1981 .

[3]  Konstantinos Kounetas,et al.  Efficiency decompositions for heterogeneous technologies , 2009, Eur. J. Oper. Res..

[4]  Rui Cunha Marques,et al.  Influential observations in frontier models, a robust non-oriented approach to the water sector , 2010, Ann. Oper. Res..

[5]  P. Molyneux,et al.  Efficiency in European Banking , 1996 .

[6]  S. Jara-Díaz,et al.  Productivity and efficiency with discrete variables and quadratic cost function , 2011 .

[7]  S. Kumbhakar,et al.  Labour-Use Efficiency in Swedish Social Insurance Offices , 1995 .

[8]  Leâ Opold Simar,et al.  A general methodology for bootstrapping in non-parametric frontier models , 2000 .

[9]  S. Kumbhakar,et al.  Efficiency measurement using a latent class stochastic frontier model , 2004 .

[10]  D. Skuras,et al.  Back to basics: The Comanor–Wilson MES index revisited , 2009 .

[11]  Kaiji Chen,et al.  The Role of Allocative Efficiency in a Decade of Recovery , 2013 .

[12]  G. Battese,et al.  Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India , 1992 .

[13]  Robert J. Hill,et al.  Identifying Outliers in Multi-Output Models , 2004 .

[14]  D. Broadstock,et al.  Spillovers, path dependence and the productive performance of European transportation sectors in the presence of technology heterogeneity , 2016 .

[15]  Giorgio Vittadini,et al.  Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency , 2014 .

[16]  M. Hassan,et al.  Technical, scale and allocative efficiencies of Turkish banking industry , 2002 .

[17]  Y. Mundlak On the Pooling of Time Series and Cross Section Data , 1978 .

[18]  Fulvio Castellacci,et al.  Technological regimes, Schumpeterian patterns of innovation and firm level productivity growth , 2010 .

[19]  J. Giles,et al.  A Control Function Approach to Estimating Dynamic Probit Models with Endogenous Regressorsa , 2013 .

[20]  W. S. Comanor,et al.  Advertising and the Advantages of Size , 1969 .

[21]  Almas Heshmati,et al.  Knowledge capital and performance heterogeneity: : A firm-level innovation study , 2002 .

[22]  Irene Mia,et al.  The Global Competitiveness Index: Prioritizing the Economic Policy Agenda , 2009 .

[23]  A. Heshmati,et al.  Efficiency Measurement in Swedish Dairy Farms: An Application of Rotating Panel Data, 1976–88 , 1995 .

[24]  Vernon W. Ruttan,et al.  Agricultural productivity differences among countries. , 1970 .

[25]  Heike Wetzel,et al.  Transport and CO2: Productivity Growth and Carbon Dioxide Emissions in the European Commercial Transport Industry , 2012 .

[26]  Rajiv D. Banker,et al.  The super-efficiency procedure for outlier identification, not for ranking efficient units , 2006, Eur. J. Oper. Res..

[27]  George E. Battese,et al.  Technology Gap, Efficiency, and a Stochastic Metafrontier Function , 2002 .

[28]  Timothy Coelli,et al.  An Introduction to Efficiency and Productivity Analysis , 1997 .

[29]  K. Triantis,et al.  The impact of outliers and leverage points for technical efficiency measurement using high breakdown procedures , 1995 .

[30]  Fulvio Castellacci,et al.  Technological regimes and sectoral differences in productivity growth , 2007 .

[31]  Borko Stosic,et al.  Technical Efficiency of the Brazilian Municipalities: Correcting Nonparametric Frontier Measurements for Outliers , 2005 .

[32]  C. Antonelli,et al.  The knowledge cost function , 2015 .

[33]  B. Los,et al.  Sectoral productivity trends: convergence islands in oceans of non-convergence , 2014 .

[34]  Industrial Policy and Competition , 2015 .

[35]  G. Battese,et al.  A model for technical inefficiency effects in a stochastic frontier production function for panel data , 1995 .

[36]  William H. Greene,et al.  Persistent and transient productive inefficiency: a maximum simulated likelihood approach , 2014 .

[37]  P. Lane The European Sovereign Debt Crisis , 2012 .

[38]  G. Battese,et al.  A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies , 2004 .

[39]  S. Kumbhakar,et al.  Estimation of growth convergence using a stochastic production frontier approach , 2005 .

[40]  Paul W. Wilson,et al.  FEAR: A software package for frontier efficiency analysis with R , 2008 .

[41]  Paul W. Wilson,et al.  Detecting influential observations in data envelopment analysis , 1995 .

[42]  John O. S. Wilson,et al.  Integration, Productivity and Technological Spillovers: Evidence for Eurozone Banking Industries , 2014, Eur. J. Oper. Res..

[43]  Paul V. Preckel,et al.  A new method for detecting outliers in Data Envelopment Analysis , 2010 .

[44]  W. Greene Fixed and Random Effects in Stochastic Frontier Models , 2002 .

[45]  B. Verspagen,et al.  The Evolution of Productivity Gaps and Specialization Patterns , 2006 .

[46]  D. Glennon,et al.  Cost structures of banks grouped by strategic conduct , 2000 .

[47]  Efthymios G. Tsionas,et al.  Stochastic Frontier Models with Random Coefficients , 2002 .

[48]  Léopold Simar,et al.  Of Course We Can Bootstrap DEA Scores! But Does It Mean Anything? Logic Trumps Wishful Thinking , 1999 .

[49]  G. Battese,et al.  Metafrontier frameworks for the study of firm-level efficiencies and technology ratios , 2008 .

[50]  M. Ryzhenkov Resource misallocation and manufacturing productivity: The case of Ukraine , 2016 .

[51]  P. David Clio and the Economics of QWERTY , 1985 .

[52]  Leon F. McGinnis,et al.  Outlier detection in two-stage semiparametric DEA models , 2008, Eur. J. Oper. Res..

[53]  Rasoul Rezvanian,et al.  A comparative multiproduct cost study of foreign-owned and domestic-owned US banks , 2002 .

[54]  C. Syverson What Determines Productivity? , 2010 .

[55]  P. Schmidt,et al.  Production Frontiers and Panel Data , 1984 .

[56]  Andrew L. Johnson,et al.  A unified model for detecting efficient and inefficient outliers in data envelopment analysis , 2010, Comput. Oper. Res..

[57]  D. Skuras,et al.  Productive efficiency and exports: an examination of alternative hypotheses for the Greek cement industry , 2005 .

[58]  Jesús T. Pastor,et al.  A statistical test for detecting influential observations in DEA , 1999, Eur. J. Oper. Res..

[59]  J. W. B. Bos,et al.  Effects of heterogeneity on bank efficiency scores , 2009, Eur. J. Oper. Res..

[60]  Mark Doms,et al.  Understanding Productivity: Lessons from Longitudinal Microdata , 2000 .

[61]  Allan Collard-Wexler,et al.  Reallocation and Technology: Evidence from the U.S. Steel Industry , 2013 .

[62]  Yama Temouri,et al.  Institutional reforms, productivity and profitability:from rents to competition? , 2013 .

[63]  Bart Verspagen,et al.  R&D spillovers and productivity: Evidence from U.S. manufacturing microdata , 2000 .

[64]  J. Haltiwanger,et al.  Cross-Country Differences in Productivity: The Role of Allocation and Selection , 2009, SSRN Electronic Journal.

[65]  Yujiro Hayami,et al.  Sources of Agricultural Productivity Gap Among Selected Countries , 1969 .

[66]  William H. Greene,et al.  Reconsidering heterogeneity in panel data estimators of the stochastic frontier model , 2005 .

[67]  G. Dosi,et al.  Introduction: Interfirm heterogeneity—nature, sources and consequences for industrial dynamics , 2010 .

[68]  Marc J. Melitz,et al.  Dynamic Olley-Pakes Productivity Decomposition with Entry and Exit , 2012 .

[69]  J. Mairesse,et al.  Product and Labor Market Imperfections and Scale Economies: Micro-Evidence on France, Japan and the Netherlands , 2013, SSRN Electronic Journal.