The Gamma‐Frailty Poisson Model for the Nonparametric Estimation of Panel Count Data

In this article, we study nonparametric estimation of the mean function of a counting process with panel observations. We introduce the gamma frailty variable to account for the intracorrelation between the panel counts of the counting process and construct a maximum pseudo-likelihood estimate with the frailty variable. Three simulated examples are given to show that this estimation procedure, while preserving the robustness and simplicity of the computation, improves the efficiency of the nonparametric maximum pseudo-likelihood estimate studied in Wellner and Zhang (2000, Annals of Statistics 28, 779-814). A real example from a bladder tumor study is used to illustrate the method.

[1]  John M. Lachin,et al.  Analysis of Recurrent Events: Nonparametric Methods for Random-Interval Count Data , 1988 .

[2]  D. Gaver,et al.  Robust empirical bayes analyses of event rates , 1987 .

[3]  L. J. Wei,et al.  Regression analysis of multivariate incomplete failure time data by modeling marginal distributions , 1989 .

[4]  Jon A. Wellner,et al.  Two estimators of the mean of a counting process with panel count data , 2000 .

[5]  Susan A. Murphy,et al.  Consistency in a Proportional Hazards Model Incorporating a Random Effect , 1994 .

[6]  W Pan,et al.  Using Frailties in the Accelerated Failure Time Model , 2001, Lifetime data analysis.

[7]  Susan A. Murphy,et al.  Asymptotic Theory for the Frailty Model , 1995 .

[8]  P F Thall,et al.  Mixed Poisson likelihood regression models for longitudinal interval count data. , 1988, Biometrics.

[9]  Lee-Jen Wei,et al.  Regression analysis of panel count data with covariate‐dependent observation and censoring times , 2000 .

[10]  D. F. Andrews,et al.  Data : a collection of problems from many fields for the student and research worker , 1985 .

[11]  J. Lawless Regression Methods for Poisson Process Data , 1987 .

[12]  Richard D. Gill,et al.  A counting process approach to maximum likelihood estimation in frailty models , 1992 .

[13]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[14]  D. Byar,et al.  Comparisons of placebo, pyridoxine, and topical thiotepa in preventing recurrence of stage I bladder cancer. , 1977, Urology.

[15]  D P Byar,et al.  The Veterans Administration Study of Chemoprophylaxis for Recurrent Stage I Bladder Tumours: Comparisons of Placebo, Pyridoxine and Topical Thiotepa , 1980 .

[16]  J. Kalbfleisch,et al.  The Analysis of Panel Data under a Markov Assumption , 1985 .

[17]  Geurt Jongbloed,et al.  The Iterative Convex Minorant Algorithm for Nonparametric Estimation , 1998 .

[18]  M. Jamshidian A Note on parameter and standard error estimation in adaptive robust regression , 2001 .

[19]  Ying Zhang,et al.  A semiparametric pseudolikelihood estimation method for panel count data , 2002 .